The spin–orbit induced interactions among the low‐lying X, B1Σ+, a3Π, A1Π, and c3Σ states of MgO are studied with emphasis on the experimentally observed B1Σ+a3Π spin–forbidden dipole‐allowed radiative transition. A dressed diabatic states approach is used in which the spin–orbit induced perturbation of the (zeroth order) a3Π0+ and a3Π1 fine structure states is partitioned into a contribution from the zeroth order X1Σ+0+ and A1Π1 states and contributions from all other remaining states of 1Σ+0+ and 1Π1 symmetry. This perturbation–partitioning approach extends a recently developed technique for determining spin–orbit perturbed wave functions directly in the CSF basis based on first order perturbation theory [J. Chem. Phys. 83, 1168 (1985)] to situations involving quasidegenerate electronic states. The wave functions in question are expanded in second order configuration state function spaces of between 60 000–100 000 terms. The parallel [ μ(B1Σ+0+, v=0; a3Π0+v=n)] and perpendicular [ μ(B1Σ+0+, v=0; a3Π1, v=n)] components of the spin–forbidden dipole‐allowed transition moment for the B1Σ+, v=0→a3Π, v=n transition were obtained. It was found that μ(B1Σ+0+, v=0; a3Π1, v=n) peaks at n=1 and that for 0≤n≤3 we have μ(B1Σ+0+,v=0; a3Π1, v=n) >μ (B1Σ+0+,v=0; a3Π0+,v=n)]. The spin–orbit induced mixings of the zeroth order X1Σ+0+ and A1Π1 states with the a3Π0+ and a3Π1 states are responsible for the preponderance of the observed Ba (0,0) and (0,1) transition moments.

1.
T.
Ikeda
,
N. B.
Wong
,
D. O.
Harris
, and
R. W.
Field
,
J. Mol. Spectrosc.
68
,
452
(
1977
).
2.
P. C. F. Ip, Ph.D thesis, Massachusetts Institute of Technology, 1983.
3.
B. Bourguignon, Ph.D. thesis, Universite de Paris‐Sud. Centre d’Orsay, 1986.
4.
R. N.
Diffenderfer
,
D. R.
Yarkony
, and
P. J.
Dagdigian
,
J. Quant. Spectroc. Radiat. Transfer
29
,
329
(
1983
).
5.
J.
Schamps
and
H.
Lefebvre‐Brion
,
J. Chem. Phys.
56
,
573
(
1972
).
6.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
,
Chem. Phys.
3
,
277
(
1974
).
7.
C. W.
Bauschlicher
,
B. H.
Lengsfield
,
D. M.
Silver
, and
D. R.
Yarkony
,
J. Chem. Phys.
74
,
2379
(
1981
).
8.
R. N.
Diffenderfer
and
D. R.
Yarkony
,
J. Phys. Chem.
86
,
5098
(
1982
).
9.
C. W.
Bauschlicher
,
B. H.
Lengsfield
, and
B.
Liu
,
J. Chem. Phys.
77
,
4084
(
1982
).
10.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York, 1979).
11.
(a) H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One‐ and Two‐Electron (Plenum/Rosetta, New York, 1979);
(b) S. R. Langhoff and C. W. Kern, Modern Theoretical Chemistry, edited by H. F. Schaefer (Plenum, New York, 1977), Vol. 4.
12.
P. O.
Lowdin
,
J. Mol. Spectrosc.
10
,
12
(
1963
).
13.
(a) J. T. Hougen, The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules, NBS Monograph 115 (U.S. GPO, Washington, D.C., 1970);
(b) H. Lefebvre‐Brion and R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, New York, 1986).
14.
I. Shavitt, Modern Theoretical Chemistry, edited by H. F. Schaefer (Plenum, New York, 1976), Vol. 3.
15.
(a)
S. J.
Havriliak
and
D. R.
Yarkony
,
J. Chem. Phys.
83
,
1168
(
1985
);
(b)
D. R.
Yarkony
,
J. Chem. Phys.
84
,
2075
(
1986
).,
J. Chem. Phys.
16.
R.
DeVivie
,
C. M.
Marian
, and
S. D.
Peyerimhoff
,
Chem. Phys.
112
,
349
(
1987
).
17.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5689
(
1980
).
18.
F. B. Duijneveldt, Research Report No. RJ945, IBM, San Jose 1971.
19.
R. N.
Diffenderfer
and
D. R.
Yarkony
,
J. Chem. Phys.
77
,
5573
(
1982
).
20.
R. W. Field (private communication).
21.
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw‐Hill, New York, 1955), p. 7.
22.
H.
Busener
,
F.
Heinrich
, and
A.
Hese
,
Chem. Phys.
112
,
139
(
1987
).
23.
D. R.
Yarkony
,
J. Chem. Phys.
86
,
1642
(
1987
).
24.
B. H.
Lengsfield
,
J. O.
Jensen
, and
D. R.
Yarkony
,
J. Chem. Phys.
88
,
3853
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.