It is shown that the magnitude of the natural orbital (NO) occupation numbers of second‐order Mo/ller–Plesset (MP2) perturbation theory can be used to select physically reasonable configuration spaces for ground state MCSCF calculations. When the MP2 NO’s are used as an initial guess for the orbitals, a second‐order Newton–Raphson MCSCF calculation is in the local region from the first iteration. Fast convergence is therefore ensured to a stationary point with orbitals of similar structure as the MP2 NO’s, thereby reducing significantly the risk of converging to undesired stationary points.
REFERENCES
1.
2.
J. T.
Golab
, D. L.
Yeager
, and P.
Jo/rgensen
, Chem. Phys.
78
, 175
(1983
);J. T.
Golab
, D. L.
Yeager
, and P.
Jo/rgensen
, 93
, 83
(1985
)., Chem. Phys.
3.
P. E. M.
Siegbahn
, A.
Heiberg
, J.
Almlöf
, and B. O.
Roos
, J. Chem. Phys.
74
, 2384
(1981
).4.
5.
D. L.
Yeager
and P.
Jo/rgensen
, J. Chem. Phys.
71
, 755
(1979
)., J. Chem. Phys.
6.
7.
H. J. Aa.
Jensen
, P.
Jo/rgensen
, and H.
Ågren
, J. Chem. Phys.
87
, 451
(1987
).8.
is excellent for discrete and continuous excitation spectra of HCl [
J.
Cacelli
, V.
Carravetta
, and R.
Moccia
, Mol. Phys.
59
, 385
(1986
)].With high values of n (here 8) and l (here 7) quantum numbers, the hydrogen localized orbitals are also appropriately described, yielding ground state total energies of extended Gaussian basis set quality.9.
10.
11.
R. L.
Graham
, D. L.
Yeager
, J.
Olsen
, P.
Jo/rgensen
, R.
Harrison
, S.
Zarrabian
, and R.
Bartlett
, J. Chem. Phys.
85
, 6544
(1986
).12.
J. H. O.
Matos
, B. O.
Roos
, and P. A.
Malmqvist
, J. Chem. Phys.
86
, 1458
(1987
).
This content is only available via PDF.
© 1988 American Institute of Physics.
1988
American Institute of Physics
You do not currently have access to this content.