Electron drift mobilities μe and electron–ion recombination rate constants kr in gaseous, liquid, and solid argon have been measured by the analysis of transient current induced with the irradiation of an x‐ray pulse as functions of temperature and external electric field strength except solid. The effect of external dc electric field on kr up to ∼3×103 Td (1 Td=1017 V cm2/molecule) was examined in gaseous and liquid phases. The observed kr values in both liquid and gas phases were found to be much smaller than those calculated by the reduced Debye equation. The deviation, which is bigger in gas than in liquid, has been compared with recent theoretical studies15 which were presented to explain our previous data on the kr values for methane.6 It has been concluded that the recombination also in liquid and gaseous argon is not a usual diffusion‐controlled reaction. In the solid phase the observed kr values were almost in agreement with those calculated by the reduced Debye equation. The electron–ion recombination rate constants in both liquid and gas phases increased almost linearly with an external dc electric field up to a critical electric field strength below which electron mobility was nearly constant, and decreased with further increase in the electric field where electron mobility also decreased.

1.
J. M.
Warman
,
J. Phys. Chem.
87
,
4353
(
1983
).
2.
M.
Tachiya
,
J. Chem. Phys.
84
,
6178
(
1986
).
3.
M.
Tachiya
,
J. Chem. Phys.
87
,
4108
(
1987
).
4.
M.
Tachiya
,
J. Chem. Phys.
87
,
4622
(
1987
).
5.
W. L.
Morgan
,
J. Chem. Phys.
84
,
2298
(
1986
).
6.
Y.
Nakamura
,
K.
Shinsaka
, and
Y.
Hatano
,
J. Chem. Phys.
78
,
5820
(
1983
).
7.
T.
Tezuka
,
H.
Namba
,
Y.
Nakamura
,
M.
Chiba
,
K.
Shinsaka
, and
Y.
Hatano
,
Radiat. Phys. Chem.
21
,
197
(
1983
).
8.
T.
Wada
,
K.
Shinsaka
,
H.
Namba
, and
Y.
Hatano
,
Can. J. Chem.
55
,
2144
(
1977
).
9.
S. Angus and B. Armstrong, International Thermodynamic Tables of the Fluid State, Argon, 1971 (Butterworths, London, 1972).
10.
S. S.‐S.
Huang
and
G. R.
Freeman
,
Phys. Rev. A
24
,
714
(
1981
).
11.
K.
Yoshino
,
U.
Sowada
, and
W. F.
Schmidt
,
Phys. Rev. A
14
,
438
(
1976
).
12.
L. S.
Miller
,
S.
Howe
, and
W. L.
Spear
,
Phys. Rev.
166
,
87
(
1968
).
13.
K.
Shinsaka
and
G. R.
Freeman
,
Can. J. Chem.
52
,
3556
(
1974
).
14.
H.
Namba
,
K.
Shinsaka
, and
Y.
Hatano
,
J. Chem. Phys.
70
,
5331
(
1979
).
15.
Y.
Nakamura
,
H.
Namba
,
K.
Shinsaka
, and
Y.
Hatano
,
Chem. Phys. Lett.
76
,
311
(
1980
).
16.
M. H.
Cohen
and
J.
Lekner
,
Phys. Rev.
158
,
305
(
1967
).
17.
J.
Lekner
,
Phys. Rev.
158
,
130
(
1967
).
18.
V. G. Fastovskii, A. E. Rovinskii, and Y. V. Petrovskii, Inert Gases (Israel Program for Scientific Translations, Jerusalem, 1967).
19.
P. A. Egelstaff, An Introduction to the Liquid State (Academic, London, 1967), p. 4.
20.
S.
Basak
and
M. H.
Cohen
,
Phys. Rev. B
20
,
3404
(
1979
).
21.
M.
Nishikawa
,
Chem. Phys. Lett.
114
,
271
(
1985
).
22.
G.
Ascarelli
,
Phys. Rev. B
33
,
5825
(
1986
).
23.
A.
Battels
,
Phys. Lett. A
44
,
403
(
1973
).
24.
V. M.
Atrazhev
and
I. T.
Iakubov
,
J. Phys. C
14
,
5139
(
1981
).
25.
V. M.
Atrazhev
and
E. G.
Dmitriev
,
J. Phys. C
18
,
1205
(
1985
).
26.
L. G.
Christophorou
,
Chem. Phys. Lett.
121
,
408
(
1985
).
27.
Y.
Itikawa
,
At. Data Nucl. Data Tables
14
,
1
(
1974
).
28.
H. A.
Lorentz
,
Proc. Amst. Acad.
7
,
438
(
1905
).
29.
J.
Timmermans
,
J. Phys. Chem. Solids
18
,
1
(
1961
).
30.
U.
Sowada
,
J. M.
Warman
, and
M. P.
de Haas
,
Phys. Rev. B
25
,
3434
(
1982
);
U.
Sowada
,
J. M.
Warman
, and
M. P.
de Haas
,
Chem. Phys. Lett.
90
,
239
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.