Excimer laser photolysis of adsorbed trimethylaluminum has been studied using a time of flight mass spectrometric technique. Methyl molecules are found to desorb with reasonable efficiency at 193 nm, but leave the surface with surprisingly small amounts of kinetic energy. Whereas, direct excitation of a single Al–C bond with a 6.4 eV photon would result in ∼3.5 eV of excess energy, only 0.025 eV is observed in translation experimentally. Maxwell–Boltzmann fits to these desorption distributions yield a temperature of ∼150 K even though desorption occurs from surfaces at room temperature. Possible interpretations of this result are discussed.

1.
D. J.
Ehrlich
,
R. M.
Osgood
, Jr.
, and
T. F.
Deutsch
,
IEEE J. Quantum Electron.
16
,
1233
(
1980
).
2.
D. J.
Ehrlich
and
J. Y.
Tsao
,
J. Vac. Sci. Technol. B
1
,
969
(
1983
).
3.
R. M.
Osgood
and
T. F.
Deutsch
,
Science
227
,
709
(
1985
).
4.
G. S. Higashi and C. G. Fleming, in Extended Abstracts of the Beam‐Induced Chemical Processes Symposium, edited by R. J. von Gutfeld (Materials Research Society, Pittsburgh, 1985), p. 55.
5.
G. S. Higashi, G. E. Blonder, and C. G. Fleming, in Proceedings of the Photon, Beam and Plasma Stimulated Chemical Processes at Surfaces Symposium at the 1986 Fall Meeting of the Materials Research Society, Boston, MA, edited by V. M. Donnelly (Materials Research Society, Pittsburgh, 1987), Vol. 75, p. 117.
6.
E. B. D.
Bourdon
,
J. P.
Cowin
,
I.
Harrison
,
J. C.
Polanyi
,
J.
Segner
,
C. D.
Stanners
, and
P. A.
Young
,
J. Phys. Chem.
88
,
6100
(
1984
).
7.
J. S.
Foord
and
R. B.
Jackman
,
Chem. Phys. Lett.
112
,
190
(
1984
).
8.
C. E.
Bartosch
,
N. S.
Gluck
,
W.
Ho
, and
Z.
Ying
,
Phys. Rev. Lett.
57
,
1425
(
1986
).
9.
F. L.
Tabares
,
E. P.
Marsh
,
G. A.
Bach
, and
J. P.
Cowin
,
J. Chem. Phys.
86
,
738
(
1987
).
10.
E. P.
Marsh
,
F. L.
Tabares
,
M. R.
Schneider
, and
J. P.
Cowin
,
J. Vac. Sci. Technol. A
5
,
519
(
1987
).
11.
R. J.
Peglar
,
F. H.
Hambleton
, and
J. A.
Hockey
,
J. Catal.
20
,
309
(
1971
).
12.
G. S.
Higashi
,
L. J.
Rothberg
, and
C. G.
Fleming
,
Chem. Phys. Lett.
115
,
167
(
1985
).
13.
G. S.
Higashi
and
L. J.
Rothberg
,
J. Vac. Sci. Technol. B
3
,
1460
(
1985
).
14.
G. S.
Higashi
and
L. J.
Rothberg
,
Appl. Phys. Lett.
47
,
1288
(
1985
).
15.
D. J.
Ehrlich
and
R. M.
Osgood
, Jr.
,
Chem. Phys. Lett.
79
,
381
(
1981
).
16.
The reason for this discrepancy is probably explained by variation of the per pulse fluence when working in single shot mode vs repetitive pulse mode.
17.
H. H. Gilgen, C. J. Chen, R. Krchnavek, and R. M. Osgood, Jr., in Springer Series in Chemical Physics on Laser Processing and Diagnostics, edited by D. Bauerle (Springer, Berlin, 1984), Vol. 39, p. 225.
18.
G.
Wedler
and
H.
Ruhmann
,
Surf. Sci.
121
,
464
(
1982
).
19.
J. R.
Arthur
and
T. R.
Brown
,
J. Vac. Sci. Technol.
12
,
200
(
1975
).
20.
K. C.
Janda
,
J. E.
Hurst
,
J. P.
Cowin
,
L.
Wharton
, and
D. J.
Auerbach
,
Surf. Sci.
130
,
395
(
1983
).
21.
J. C.
Tully
,
Surf. Sci.
111
,
461
(
1981
).
22.
M. J.
Cardillo
,
M.
Balooch
, and
R. E.
Stickney
,
Surf. Sci.
50
,
263
(
1975
).
23.
R. T.
Pack
,
J. Chem. Phys.
65
,
4765
(
1976
).
24.
C. J.
Chen
and
R. M.
Osgood
,
J. Chem. Phys.
81
,
318
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.