Dissociative adsorption of oxygen on certain (100) metal surfaces has been modeled as random dimer adsorption onto diagonally adjacent empty sites of a square lattice subject to the additional constraint that all six neighboring sites must be empty (the 8‐site model). Here we adapt this model to analyze the nonequilibrium c(2×2) ordering recently observed for oxygen on Pd(100) at coverages up to saturation (>1/4 monolayer), under conditions of low temperature and high pressure where effects of diffusive mobility can be ignored. We do, however, propose that adsorption could be followed immediately by short range transient mobility to dissipate excess energy. We first show how exact master equations for this model can be used to obtain analytic expressions for various local quantities of interest: the probability of an empty 8‐site configuration (which determines the sticking coefficient), the c(2×2) island edge or domain boundary densities, etc. They also provide a characterization of, e.g., the asymptotic decay of spatial correlations. Near‐percolating (percolative) c(2×2) ordering is readily observed in computer simulations of the saturationstate. Through a simple extension of the physical model, we provide a framework for analysis of the large scale characteristics of this ordering via correlated polychromatic percolation theory. Corresponding scaling relations and some real space renormalization group analysis are described. Simulation results for average sizes, the effective dimension, and perimeter length to size ratios, of c(2×2) islands, are also presented.

1.
See, for example,
J. K.
Roberts
,
Proc. R. Soc. London Ser. A
152
,
473
(
1935
);
J. K.
Roberts
,
161
,
141
(
1937
); ,
Proc. R. Soc. London, Ser. A
R. B.
Grant
and
R. M.
Lambert
,
Surf. Sci.
146
,
256
(
1984
).
2.
K. J.
Vette
,
T. W.
Orent
,
D. K.
Hoffman
, and
R. S.
Hansen
,
J. Chem. Phys.
60
,
4854
(
1974
);
R. S.
Nord
and
J. W.
Evans
,
J. Chem. Phys.
82
,
2795
(
1985
); ,
J. Chem. Phys.
R. S. Nord, Ph.D. Thesis, Iowa State University, 1986.
3.
M. G.
Lagally
,
G.‐C.
Wang
, and
T.‐M.
Lu
,
CRC Crit. Rev. Solid State Mater. Sci.
7
,
233
(
1978
).
4.
J. W.
Evans
and
R. S.
Nord
,
J. Vac. Sci. Technol. A
5
,
1040
(
1987
);
J. W.
Evans
,
J. A.
Bartz
, and
D. E.
Sanders
,
Phys. Rev. A
34
,
1434
(
1986
).
5.
S.‐L. Chang and P. A. Thiel, Phys. Rev. Lett. (in press);
see also
J. W.
Anderegg
and
P. A.
Thiel
,
J. Vac. Sci. Technol. A
4
,
1367
(
1986
).
6.
G.
Ertl
and
J.
Koch
,
Z. Phys. Chem.
69
,
323
(
1970
);
T. W.
Orent
and
S. D.
Bader
,
Surf. Sci.
115
,
323
(
1982
);
the observed p(2×2) diffraction pattern could be associated with pure 2×2,2×2,2×2+ disordered (or even 2×1) ordering; significant trio interactions may be present [c.f.
R. G.
Caflisch
and
A. N.
Berker
,
Phys. Rev. B
29
,
1279
(
1984
)].
7.
C. R.
Brundle
,
J.
Behm
, and
J. A.
Barker
,
J. Vac. Sci. Technol. A
2
,
1038
(
1984
);
C. R.
Brundle
,
J. Vac. Sci. Technol. A
3
,
1468
(
1985
).,
J. Vac. Sci. Technol. A
8.
D. E.
Taylor
and
R. L.
Park
,
Surf. Sci.
125
,
L73
(
1983
).
9.
P.
Kisliuk
,
J. Phys. Chem. Solids
3
,
95
(
1957
);
P.
Kisliuk
,
5
,
78
(
1958
); ,
J. Phys. Chem. Solids
N. O.
Wolf
,
D. R.
Burgess
, and
D. K.
Hoffman
,
Surf. Sci.
100
,
453
(
1980
);
taking account of the precursor state kinetics, one finds that S(θ)/S(0) = P8×[1+kaka−1(P8−1−1)] [1+kd(κ+kd)−1(Ps−1−1)]−1 where ka(ka) and kd(kd) are intrinsic (extrinsic) precursor adsorption and desorption rates.
10.
K. Kawaski, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic, New York, 1972), Vol. 2.
11.
The procedure described in
D. K.
Hoffman
,
J. Chem. Phys.
65
,
95
(
1976
) and Ref. 12 can be used when diffusive mobility is absent, but is less efficient.
12.
J. W.
Evans
,
Physica A
123
,
297
(
1984
).
13.
J. W.
Evans
and
R. S.
Nord
,
J. Stat. Phys.
38
,
681
(
1985
), Sec. 2.1.
14.
J. W.
Evans
,
D. R.
Burgess
, and
D. K.
Hoffman
,
J. Math. Phys.
25
,
3051
(
1984
).
15.
The key point here is that such strings of s atoms can be created in O(s) ways [cf. Appendix A of
R. S.
Nord
,
D. K.
Hoffman
, and
J. W.
Evans
,
Phys. Rev. A
31
,
3820
(
1985
)].
16.
J. W.
Evans
,
D. R.
Burgess
, and
D. K.
Hoffman
,
J. Chem. Phys.
79
,
5011
(
1983
); the minimum thickness of the shielding wall is determined by the requirement that adatoms from a single molecule cannot end up on, or be affected by sites on opposite sides of this wall.
17.
For momentum transfer δk and lattice spacing a set q = aΔk. The diffracted intensity for qx,qy≠O(mod 2ππ),I(q)∞ΣIC(l) exp(iq·l), with C(O) = θ−θ2, assumes the low‐θformI(q)∞1+Σ1Q(1) exp(iq·l), where Q(l) = Q(−l) are the normalized θ→0 probabilities for adatoms from a single diatom to end up separated by l lattice vectors. Thus, for immobile adsorption at low θ,I(q)∞1+cos qxcosqy, i.e., the broadest possible c(2×2) diffraction pattern corresponding to the smallest possible c(2×2) islands (two adatoms on 2NN sites).
18.
Average linear island dimensions can be determined via the pair connectivities, which are always sensitive to percolation transitions (see Sec. III), in contrast to pair correlations. Typically, pair connectivities and correlations will be more closely related for equilibrium distributions [see
A.
Coniglio
,
C. R.
Nappi
,
F.
Peruggi
, and
L.
Russo
,
J. Phys. A
10
,
205
(
1977
)], than in our models.
19.
G.‐C.
Wang
and
T.‐M.
Lu
,
Phys. Rev. B
28
,
6795
(
1983
);
J. W.
Evans
and
R. S.
Nord
,
Phys. Rev. B
B
35
,
6004
(
1987
).,
Phys. Rev. B
20.
J. M.
Pimbley
,
T.‐M.
Lu
, and
G.‐C.
Wang
,
J. Vac. Soc. Technol. A
4
,
1357
(
1986
).
21.
R.
Zallen
,
Phys. Rev. B
16
,
1426
(
1977
).
22.
Percolation of a c(2×2) island in one direction (e.g., E‐W) rules out percolation of another noncrossing c(2×2) island (e.g., of different color) in the perpendicular direction. A rigorous treatment could parallel the proof of
M. E.
Fisher
,
J. Math. Phys.
2
,
620
(
1961
), that the random site percolation threshold satisfies ps⩾1/2.
23.
For distributions on Bethe lattices with no NN filled pairs, percolation of filled clusters defined by 2NN connectivity can occur, and has been described as two‐phase percolation [J. W. Evans, J. Phys. A (submitted)].
24.
D.
Stauffer
,
Phys. Rep.
54
,
1
(
1979
);
Introduction to Percolation Theory (Taylor and Francis, London, 1985).
25.
D. E. Sanders and J. W. Evans (in preparation), provides a detailed analysis of cluster statistics.
26.
Based on random percolation results, behavior associated with suitably defined nonrandom lattice animals PG<Pc, might be expected, but is not guaranteed. Let PG(p,{s}) denote the probability of an s‐site green island {s} at pG = p; then the weight for the animal {s} is naturally chosen as limp→0 p−sPG(p,{s}).
27.
J. L.
Lebowitz
and
H.
Saleur
,
Physica A
138
,
194
(
1986
).
28.
H. E.
Stanley
,
J. Phys. A
10
,
L211
(
1977
).
29.
D.
Stauffer
,
Phys. Rev. Lett.
41
,
1333
(
1978
);
P. L.
Leath
,
Phys. Rev. B
14
,
5046
(
1976
).
30.
E.
Stoll
and
C.
Domb
,
J. Phys. A
12
,
1843
(
1979
);
A.
Coniglio
and
L.
Russo
,
J. Phys. A
12
,
545
(
1979
).,
J. Phys. A
31.
R. M.
Ziff
,
P. T.
Cummings
, and
G. T.
Stell
,
J. Phys. A
17
,
3009
(
1984
).
32.
D. J.
Dwyer
,
G. W.
Simmons
, and
R. P.
Wei
,
Surf. Sci.
64
,
617
(
1977
).
33.
P.
Meakin
,
J. L.
Cardy
,
E.
Loh
, and
D. J.
Scalapino
,
J. Chem. Phys.
86
,
2380
(
1987
).
34.
An 8‐site requirement tends to lower θ* relative to the 5‐site model but, for immobile diatom adsorption, this is compensated by the guarantee that both adatoms end up in the same c(2×2) island.
35.
A. Bonissent and B. Mataftschiev, in Chemistry and Physics of Solid Surfaces, (Chemical Rubber, Boca Raton, FL, 1982), Vol. III.
36.
D. E. Sanders and J. W. Evans (in preparation), provides a simulation estimate of θ*≈0.379;
J. W.
Evans
,
J. Math. Phys.
25
,
2527
(
1984
), provides an analytic estimate of θ*≈0.375.
37.
J. W. Evans, J. Phys. A (in press);
see Fig. 3 of
M.
Nakamura
,
J. Phys. A
19
,
2345
(
1986
).
38.
P. J.
Reynolds
,
H. E.
Stanley
, and
W.
Klein
,
Phys. Rev. B
21
,
1223
(
1980
).
39.
P. J.
Reynolds
,
W.
Klein
, and
H. E.
Stanley
,
J. Phys. C
10
,
L167
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.