The rotational diffusion behavior of cresyl violet is observed to be solvent dependent, producing an induced orientational anisotropy function with single exponential decays in both ethylene glycol at 26 °C and 1‐dodecanol at 37 °C, but a two‐component decay in 1‐dodecanol at 26 °C. It is clear from this data that cresyl violet is experiencing significant changes in its local solvation environment. Without knowledge of the orientation of the transition moment within the molecule, however, the interpretation of these results is ambiguous. A simple calculation is presented which allows for the estimation of the intramolecular orientation of the transition moment, thereby removing ambiguity from the interpretation. The observed behavior is shown to be consistent with cresyl violet reorienting as an oblate rotor in ethylene glycol and 1‐dodecanol at 37 °C, and as a prolate rotor in 1‐dodecanol at 26 °C.

1.
M. J.
Sanders
and
M. J.
Wirth
,
Chem. Phys. Lett.
101
,
361
(
1983
).
2.
A.
Von Jena
and
H. E.
Lessing
,
Chem. Phys. Lett.
78
,
187
(
1981
).
3.
A.
Von Jena
and
H. E.
Lessing
,
Chem. Phys.
40
,
245
(
1979
).
4.
E. F.
Gudgin Templeton
,
E. L.
Quitevis
, and
G. A.
Kenney‐Wallace
,
J. Phys. Chem.
89
,
3238
(
1985
).
5.
E. F.
Gudgin Templeton
and
G. A.
Kenney‐Wallace
,
J. Phys. Chem.
90
,
2896
(
1986
).
6.
K. G.
Spears
and
K. M.
Steinmetz
,
J. Phys. Chem.
89
,
3623
(
1985
).
7.
G. J.
Blanchard
and
M. J.
Wirth
,
J. Phys. Chem.
90
,
2521
(
1986
).
8.
G. J.
Blanchard
and
M. J.
Wirth
,
J. Chem. Phys.
82
,
39
(
1985
).
9.
D. P.
Millar
,
R.
Shah
, and
A. H.
Zewail
,
Chem. Phys. Lett.
66
,
435
(
1979
).
10.
K. B.
Eisenthal
and
K. H.
Drexhage
,
J. Chem. Phys.
51
,
5720
(
1969
).
11.
T. J.
Chuang
and
K. B.
Eisenthal
,
Chem. Phys. Lett.
11
,
368
(
1971
).
12.
C. V.
Shank
and
E. P.
Ippen
,
Appl. Phys. Lett.
26
,
62
(
1975
).
13.
K. B.
Eisenthal
,
Acc. Chem. Res.
8
,
118
(
1975
).
14.
G. R.
Fleming
,
J. M.
Morris
, and
G. W.
Robinson
,
Chem. Phys.
17
,
91
(
1976
).
15.
R. S.
Moog
,
M. D.
Ediger
,
S. G.
Boxer
, and
M. D.
Fayer
,
J. Phys. Chem.
86
,
4694
(
1982
).
16.
F.
Perrin
,
J. Phys. Radium
,
5
,
497
(
1934
).
17.
T.
Tao
,
Biopolymers
8
,
609
(
1969
).
18.
A.
Von Jena
and
H. E.
Lessing
,
Ber. Bunsenges. Phys. Chem.
83
,
181
(
1979
).
19.
L. D.
Favro
,
Phys. Rev.
119
,
53
(
1960
).
20.
T. J.
Chuang
and
K. B.
Eisenthal
,
J. Chem. Phys.
57
,
5094
(
1972
).
21.
F. A. Cotton, Chemical Applications of Group Theory (Wiley Interscience, New York, 1971), pp. 100–102.
22.
A. Streitwieser, Jr., Molecular Orbital Theory for Oganic Chemists (Wiley, New York, 1961).
23.
G. J.
Blanchard
and
M. J.
Wirth
,
Anal. Chem.
58
,
532
(
1986
).
24.
L.
Andor
,
A.
Lorincz
,
J.
Siemion
,
D. D.
Smith
, and
S. A.
Rice
,
Rev. Sci. Instrum.
55
,
64
(
1984
).
25.
E. L.
Quitevis
,
E. F.
Gudgin Templeton
, and
G. A.
Kenney‐Wallace
,
Appl. Opt.
24
,
318
(
1985
).
26.
P. Debye, Polar Molecules (Chemical Catalog, New York, 1929), p. 84.
27.
C.‐M.
Hu
and
R. J.
Zwanzig
,
J. Chem. Phys.
60
,
4354
(
1974
).
28.
J.
Knof
,
F. J.
Theiss
, and
J.
Weber
,
Opt. Commun.
17
,
264
(
1976
).
29.
D.
Waldeck
,
A. J.
Cross
, Jr.
,
D. B.
McDonald
, and
G. R.
Fleming
,
J. Chem. Phys.
74
,
3381
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.