The interaction of methanol with potassium‐dosed (up to monolayer) Rh(111) surface has been studied by means of thermal desorption, ultraviolet photoemission (He ii) spectroscopy and work function measurements. Preadsorbed potassium significantly influenced the adsorption, desorption, and stability of CH3OH on this Rh surface, but the pathway of the dissociation of CH3OH and its surface decomposition were not altered. An increase (6–10 kJ/mol) in the binding energy of chemisorbed CH3OH was found even in the low potassium coverage range, θK=0.05–0.26. At higher potassium coverages (θK=0.36, monolayer), where K exhibits mainly metallic character, the relative amount of irreversibly adsorbed methanol was greatly increased. In this case methoxy species was detected by He ii photoemission studies: its complete decomposition occurred at around 492–505 K. The stabilization of the methoxy species was reflected in the high temperature for the evolution of H2(TP=515 K), too. In the interpretation of the data a direct chemical interaction between methanol and potassium and the formation of a stable potassium methoxide is proposed.

1.
H. H.
Kung
,
Catal. Rev.
22
,
235
(
1980
).
2.
K.
Klier
,
Adv. Catal.
31
,
243
(
1982
).
3.
M. L.
Poutsma
,
L. F.
Elek
,
P. A.
Ibarbia
,
A. P.
Risch
, and
J. A.
Rabó
,
J. Catal.
52
,
157
(
1978
).
4.
M. M.
Bhasin
,
W. J.
Bartley
,
P. L.
Ellgen
, and
T. P.
Wilson
,
J. Catal.
54
,
120
(
1978
).
5.
A.
Deluzarche
,
J. P.
Hindermann
,
R.
Kieffer
, and
A.
Kienemann
,
Rev. Chem. Int.
6
,
625
(
1985
).
6.
K.
Christmann
and
J. E.
Demuth
,
J. Chem. Phys.
76
,
6308
,
6318
(
1982
).
7.
F.
Solymosi
,
A.
Berkó
, and
T. I.
Tarnóczi
,
Surf. Sci.
141
,
533
(
1984
).
8.
J. N.
Russel
, Jr.
,
S. M.
Gates
, and
J. T.
Yates
, Jr.
,
Surf. Sci.
163
,
516
(
1985
).
9.
S.
Akhter
and
J. M.
White
,
Surf. Sci.
167
,
101
(
1986
).
10.
F.
Solymosi
,
T. I.
Tarnóczi
, and
A.
Berkó
,
J. Phys. Chem.
88
,
6170
(
1984
).
11.
J.
Hrbek
,
R.
DePaola
, and
F. M.
Hoffmann
,
Surf. Sci.
166
,
361
(
1986
).
12.
F.
Solymosi
and
L.
Bugyi
,
J. Chem. Soc. Faraday Trans. 1
83
,
2015
(
1987
).
13.
A. Berkó, I. Kovács, and F. Solymosi (to be published).
14.
F.
Solymosi
,
J.
Kiss
, and
I.
Kovács
,
J. Vac. Sci. Technol. A
5
,
1108
(
1987
).
15.
J.
Paul
,
J.
Walldén
, and
A.
Rosén
,
Surf. Sci.
146
,
43
(
1984
).
16.
J.
Paul
,
Surf. Sci.
160
,
599
(
1985
).
17.
R. A.
DePaola
,
J.
Hrbek
, and
F. M.
Hoffmann
,
Surf. Sci.
169
,
L348
(
1986
).
18.
J.
Kiss
and
F.
Solymosi
,
Surf. Sci.
135
,
243
(
1983
).
19.
D. E.
Peebles
,
H. C.
Peebles
, and
J. M.
White
,
Surf. Sci.
136
,
463
(
1984
).
20.
W.
Braun
,
M.
Neumann
,
M.
Iwan
, and
E. E.
Koch
,
Phys. Status Solidi B
90
,
525
(
1978
).
21.
G.
Rubloff
and
J. E.
Demuth
,
J. Vac. Sci. Technol.
14
,
419
(
1977
).
22.
P. Hoffmann, C. Mariani, K. Horn, and A. M. Bradshaw, Proceedings of the 4th International Conference on Solid Surfaces, Vol. 1, p. 541 (1980).
23.
J. W.
Rogers
, Jr.
,
R. L.
Hance
, and
J. M.
White
,
Surf. Sci.
100
,
388
(
1980
).
24.
K. Christmann and J. Rüstig, Proceedings of the 8th International Congress on Catalysis, Vol. IV, p. 13 (1984).
25.
J.
Paul
,
Surf. Sci.
169
,
599
(
1985
).
26.
J.
Paul
,
L.
Wallden
, and
A.
Rosén
,
Surf. Sci.
146
,
43
(
1984
).
27.
B. A.
Sexton
,
A. E.
Hughes
, and
N. R.
Avery
,
Surf. Sci.
155
,
366
(
1985
).
28.
J.
Hrbek
,
R. A.
DePaola
, and
F. M.
Hoffmann
,
J. Chem. Phys.
81
,
2818
(
1984
).
29.
J. A.
Gates
and
L. L.
Kesmodel
,
J. Catal.
83
,
437
(
1983
).
30.
J. E.
Crowell
,
E. L.
Garfunkel
, and
G. A.
Somorjai
,
Surf. Sci.
164
,
602
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.