A Lagrange‐multiplier method for finding the complete spectrum of Lyapunov exponents, which describe the spreading and mixing of many‐body phase‐space trajectories, is developed and applied here to simple two‐ and three‐dimensional equilibrium fluids with short‐range repulsive forces. The numerical values of the Lyapunov exponents converge well, in computer simulations of 103 to 105 time steps, and are insensitive both to the initial conditions and to the numerical accuracy of the trajectory integration.

1.
B.
Moran
,
W. G.
Hoover
, and
S.
Bestiale
,
J. Stat. Phys.
48
,
709
(
1987
).
2.
W. G. Hoover, H. A. Posch, B. L. Holian, M. J. Gillan, M. Mareschal, C. Massobrio, and S. Bestiale, Mol. Simul. (in press).
3.
D. J.
Evans
and
W. G.
Hoover
,
Annu. Rev. Fluid Mech.
18
,
243
(
1986
).
4.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun, National Bureau of Standards Applied Mathematics Series (National Bureau of Standards, Washington, D.C., 1964), Vol. 55. See formula 25.5.10 on p. 896.
5.
I.
Shimada
and
I.
Nagashima
,
Prog. Theor. Phys.
61
,
1605
(
1979
).
6.
W. G.
Hoover
and
H. A.
Posch
,
Phys. Lett. A
113
,
82
(
1985
);
W. G.
Hoover
and
H. A.
Posch
,
123
,
227
(
1987
).
7.
B. L.
Holian
,
W. G.
Hoover
, and
H. A.
Posch
,
Phys. Rev. Lett.
59
,
10
(
1987
).
8.
B. J.
Alder
,
W. G.
Hoover
, and
T. E.
Wainwright
,
Phys. Rev. Lett.
11
,
241
(
1963
).
9.
Liquids of Small Molecules, Proceedings to be published by the European Physical Society. See paper by H. A. Posch and W. G. Hoover, presented at S. Trada, Calabria, Italy, 22 September, 1987.
This content is only available via PDF.
You do not currently have access to this content.