This paper explores the usefulness of the time‐dependent self‐consistent field (TDSCF) approximation for treating the dynamics of a reaction coordinate coupled to a bath of harmonic degrees of freedom. The reaction coordinate is a one‐dimensional double well potential, typical of a hydrogen atom isomerization process. The standard (i.e., one configuration) TDSCF approximation is found to provide a very poor description of the effect of coupling to the bath on the isomerization rate. A multiconfiguration (MC‐TDSCF) treatment is thus developed and found to provide a much improved description.

1.
(a)
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
);
(b)
W. H.
Miller
,
J. Phys. Chem.
87
,
3811
(
1983
).
2.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw‐Hill, New York, 1965).
3.
(a)
D.
Thirumalai
and
B. J.
Berne
,
J. Chem. Phys.
79
,
5029
(
1983
);
(b)
D.
Thirumalai
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
79
,
5063
(
1983
); ,
J. Chem. Phys.
(c)
D.
Thirumalai
and
B. J.
Berne
,
J. Chem. Phys.
81
,
2512
(
1984
).,
J. Chem. Phys.
4.
(a)
J. D.
Doll
,
J. Chem. Phys.
81
,
3536
(
1984
);
(b)
D. L.
Freeman
,
R. D.
Coalson
, and
J. D.
Doll
,
J. Stat. Phys.
43
,
931
(
1986
).
5.
R. W.
Hall
and
P. G.
Wolynes
,
J. Stat. Phys.
43
,
935
(
1986
).
6.
(a)
D.
Chandler
and
P.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
);
(b)
M.
Sprik
,
M. L.
Klein
, and
D.
Chandler
,
J. Chem. Phys.
83
,
3042
(
1985
).,
J. Chem. Phys.
7.
(a)
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
);
(b)
R.
Jaquet
and
W. H.
Miller
,
J. Phys. Chem.
89
,
2139
(
1985
);
(c)
Y.
Yamashita
and
W. H.
Miller
,
J. Chem. Phys.
82
,
5475
(
1985
).
8.
(a)
J. D.
Doll
,
J. Chem. Phys.
81
,
3536
(
1984
);
(b)
R. D.
Coalson
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
85
,
4567
(
1986
); ,
J. Chem. Phys.
(c) J. D. Doll and D. L. Freeman, ibid. (in press).
9.
J.
Chang
and
W. H.
Miller
,
J. Chem. Phys.
87
,
1648
(
1987
).
10.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
139
,
10
(
1987
).
11.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
86
,
1451
(
1987
).
12.
(a)
R. B.
Gerber
,
V.
Buch
, and
M. A.
Ratner
,
J. Chem. Phys.
77
,
3022
(
1982
);
(b)
V.
Buch
,
R. B.
Gerber
, and
M. A.
Ratner
,
Chem. Phys. Lett.
101
,
44
(
1983
);
(c)
R. B.
Gerber
,
V.
Buch
, and
M. A.
Ratner
, ibid.
91
,
173
(
1982
); ,
Chem. Phys. Lett.
(d)
G. C.
Schatz
,
V.
Buch
,
M. A.
Ratner
, and
R. B.
Gerber
,
J. Chem. Phys.
79
,
1808
(
1983
).
13.
R. B. Gerber, V. Buch, and M. A. Ratner, in Proceedings of the 15th Jerusalem Symposium on Quantum Chemistry and Biochemistry, edited by J. Jortner and B. Pullman (Reidel, Dordrecht, 1982).
14.
(a)
R.
Harris
,
J. Chem. Phys.
72
,
1776
(
1980
);
(b)
D. L.
Yeager
and
P.
Jo/rgensen
,
Chem. Phys. Lett.
65
,
77
(
1979
);
(c)
P.
Albertsen
,
P.
Jo/rgensen
, and
D. L.
Yeager
,
Mol. Phys.
41
,
409
(
1980
).
15.
E. J.
Heller
,
J. Chem. Phys.
62
,
1544
(
1975
).
16.
K. M.
Christoffel
and
J. M.
Bowman
,
J. Chem. Phys.
74
,
5057
(
1981
).
17.
B.
Carmeli
and
H.
Metiu
,
Chem. Phys. Lett.
133
,
543
(
1987
).
18.
E. C.
Behrman
and
P. G.
Wolynes
,
J. Chem. Phys.
83
,
5863
(
1985
).
19.
W. H. Miller, in Stochasticity and Intramolecular Redistribution of Energy, edited by R. Lefebvre and S. Mukamel (Reidel, Boston, 1987).
20.
See, for example,
G. D.
Billing
,
Chem. Phys. Lett.
30
,
391
(
1975
);
also
J. Chem. Phys.
64
,
908
(
1976
).
21.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
22.
This procedure is what results from using the Dirac time‐dependent variational principle, i.e., requiring that the functional ∫dt〈Ψ(t)|iℏ(∂/∂t)−H|Ψ(t)〉 be stationary with respect to variation of Ψ.
23.
I. P.
Hamilton
and
J. C.
Light
,
J. Chem. Phys.
84
,
306
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.