The relative stabilities of alkali‐like metal clusters, Mn and M+n with 2≤n≤9, are calculated within the framework of the simple Hückel model. With the aid of graph theory, the binding energies for allpossible Hückel structures are determined. With the exception of M+5 and M+6 , the Hückel model gives minimum energy structures which are the same as those predicted by recent local‐spin‐density and configuration interaction calculations. Since the Hückel method is independent of the mechanical details of the bonding, a close connection is inferred between a cluster’s stability and its topology. In the paper following this one, the Hückel results are extended to include absolute atomization energies and ionization potentials. In addition, it is shown that cluster energies may be quantitatively extrapolated to the bulk phase.

1.
D. M.
Lindsay
,
D. R.
Herschbach
, and
A. L.
Kwiram
,
Mol. Phys.
32
,
1199
(
1976
).
2.
G. A.
Thompson
and
D. M.
Lindsay
,
J. Chem. Phys.
74
,
959
(
1981
).
3.
D. A.
Garland
and
D. M.
Lindsay
,
J. Chem. Phys.
78
,
2813
(
1983
).
4.
G. A.
Thompson
,
F.
Tischler
, and
D. M.
Lindsay
,
J. Chem. Phys.
78
,
5946
(
1983
).
5.
D. A.
Garland
and
D. M.
Lindsay
,
J. Chem. Phys.
80
,
4761
(
1984
).
6.
(a)
P. J.
Foster
,
R. E.
Leckenby
, and
E. J.
Robbins
,
J. Phys. B
2
,
478
(
1969
);
(b)
E. J.
Robbins
,
R. E.
Leckenby
, and
D.
Willis
,
Adv. Phys.
16
,
739
(
1967
).
7.
A.
Hermann
,
E.
Schumacher
, and
L.
Woste
,
J. Chem. Phys.
68
,
2327
(
1978
).
8.
M. M.
Kappes
,
P.
Radi
,
M.
Schár
, and
E.
Schumacher
,
Chem. Phys. Lett.
119
,
11
(
1985
).
9.
M. M.
Kappes
,
M.
Schär
,
P.
Radi
, and
E.
Schumacher
,
J. Chem. Phys.
84
,
1863
(
1986
).
10.
K. I.
Peterson
,
P. D.
Dao
,
R. W.
Farley
, and
A. W.
Castleman
, Jr.
,
J. Chem. Phys.
80
,
1780
(
1984
).
11.
W. A.
Saunders
,
K.
Clemenger
,
W. A.
de Heer
, and
W. D.
Knight
,
Phys. Rev. B
32
,
1366
(
1985
).
12.
W. D.
Knight
,
K.
Clemenger
,
W. A.
de Heer
,
W. A.
Saunders
,
M. Y.
Chou
, and
M. L.
Cohen
,
Phys. Rev. Lett.
52
,
2141
(
1984
).
13.
W. D.
Knight
,
W. A.
de Heer
, and
K.
Clemenger
,
Solid State Commun.
53
,
445
(
1985
).
14.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, New York, 1979).
15.
C. H.
Wu
,
J. Chem. Phys.
65
,
3181
(
1976
).
16.
C. H.
Wu
,
J. Phys. Chem.
87
,
1538
(
1983
).
17.
K.
Hilpert
,
Ber. Bunsenges. Phys. Chem.
88
,
260
(
1984
).
18.
For a summary of the earlier alkali trimer calculations see:
E. R.
Dietz
,
Phys. Rev. A
23
,
751
(
1981
).
19.
J. L.
Martins
,
R.
Car
, and
J.
Buttet
,
J. Chem. Phys.
78
,
5646
(
1983
).
20.
T. C.
Thompson
,
G.
Izmirlian
,
S. J.
Lemon
,
D. G.
Truhlar
, and
C. A.
Mead
,
J. Chem. Phys.
82
,
5597
(
1985
).
21.
S. C.
Richtsmeier
,
D. A.
Dixon
, and
J. L.
Gole
,
J. Phys. Chem.
86
,
3942
(
1982
).
22.
J.
Flad
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
71
,
3042
(
1979
).
23.
H.‐O.
Beckmann
,
J.
Koutecký
, and
V.
Bonacić‐Koutecký
,
J. Chem. Phys.
73
,
5182
(
1980
);
D.
Plavsić
,
J.
Koutecký
,
G.
Pacchioni
, and
V.
Bonacić‐Koutecký
,
J. Phys. Chem.
87
,
1096
(
1983
).
24.
G.
Pacchioni
,
D.
Plavsić
, and
J.
Koutecký
,
Ber. Bunsenges. Phys. Chem.
87
,
503
(
1983
).
25.
P.
Fantucci
,
J.
Koutecký
, and
G.
Pacchioni
,
J. Chem. Phys.
80
,
325
(
1984
).
26.
J.
Kouteckyá
and
P.
Fantucci
,
Chem. Rev.
86
,
539
(
1986
).
27.
J. L.
Martins
,
J.
Buttet
, and
R.
Car
,
Phys. Rev. B
31
,
1804
(
1985
).
28.
E.
Hückel
,
Z. Phys.
70
,
204
(
1931
);
E.
Hückel
,
72
,
310
(
1932
); ,
Z. Phys.
E.
Hückel
,
76
,
628
(
1932
).,
Z. Phys.
29.
L. Salem, Molecular Orbital Theory of Conjugated Systems (Benjamin, New York, 1966).
30.
A. Streitwieser, Molecular Orbital Theory (Wiley, New York, 1961).
31.
F. Harary, Graph Theory (Addision‐Wesley, Massachusetts, 1969).
32.
The close connection between Hückel theory and the topology of conjugated molecules has long been recognized. See, for example, N. Trinajstic, in Semiempirical Methods of Electronic Structure Calculations, Part A: Techniques, edited by G. A. Segal (Plenum, New York, 1977).
33.
F. Harary and E. M. Palmer, Graphical Enumeration (Academic, New York, 1973).
34.
D. G.
Corneil
and
C. C.
Gotlieb
,
J. Assoc. Comput. Mach.
17
,
51
(
1970
).
35.
In some graphs, however, it is possible that several vertices may have exactly the same connectivity, for example, the symmetric points in a graph. Thus, starting from different incidence matrices, we may end up with different Sq, even if they represent intrinsically the same graph. In order to get a unique standard incidence matrix, we interchange these vertices, thus generating several possible Sq, which represent the same graph. For two such Sq, we compare, term by term and, in order of increasing i, their bi elements. When two bi are found to be different, we choose that Sq which has the larger value of bi. In this way, we select the optimized sequence order vector.
36.
D. M. Himmelblau, Applied Nonlinear Programming (McGraw‐Hill, New York, 1972).
37.
D. M.
Lindsay
,
Y.
Wang
, and
T. F.
George
,
J. Chem. Phys.
86
,
3500
(
1986
).
38.
B. K.
Rao
and
P.
Jena
,
Phys. Rev. B
32
,
2058
(
1985
);
B. K.
Rao
,
S. N.
Khanna
, and
P.
Jena
,
Solid State Commun.
56
,
731
(
1985
).
39.
It is interesting that recent calculations for Si and Ge clusters also predict structures similar in many cases to those of the alkali metals. See
D.
Tománek
and
M. A.
Schlüter
,
Phys. Rev. Lett.
56
,
1055
(
1986
);
and
G.
Pacchioni
and
J.
Koutecký
,
J. Chem. Phys.
84
,
3301
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.