Guided ion beam mass spectrometry is used to examine the kinetic energy dependence of the reaction of ground state atomic oxygen ion with molecular nitrogen. An O+(4S) source which produces less than 0.06% excited states is described. Cross sections for the NO++N product channel decrease with increasing energy below 0.25 eV but increase with energy at higher energies. Analysis of the region above 0.25 eV finds an effective barrier of 0.33±0.08 eV which previous theoretical work suggests is on the N2O+(1 4A″) hypersurface. Below this barrier, ground state products can only be formed via a spin‐forbidden surface transition. The magnitude and energy dependence of the probability for this transition are in reasonable agreement with a Landau–Zener formalism. These results are compared to previous ion beam, flowing afterglow (FA), and flow/drift tube (FD) studies. Apparent disagreement between the present data and previous FA and FD measurement is shown to be caused primarily by differences in the ion energy distributions.

1.
G.
Gioumousis
and
D. P.
Stevenson
,
J. Chem. Phys.
29
,
294
(
1958
).
2.
C. Giese, in Ion‐Molecule Reactions in the Gas Phase, edited by P. J. Ausloos (American Chemical Society, Washington, D.C., 1966), p. 20.
3.
B. R.
Turner
,
J. A.
Rutherford
, and
D. M. J.
Compton
,
J. Chem. Phys.
48
,
1602
(
1968
).
4.
J. J.
Leventhal
,
J. Chem. Phys.
54
,
5102
(
1971
).
5.
J. A.
Rutherford
and
D. A.
Vroom
,
J. Chem. Phys.
55
,
5622
(
1971
).
6.
B. M.
Hughes
and
T. O.
Tiernan
,
J. Chem. Phys.
55
,
3419
(
1971
).
7.
R. B.
Cohen
,
J. Chem. Phys.
57
,
676
(
1972
).
8.
R. H.
Neynaber
and
G. D.
Magnuson
,
J. Chem. Phys.
58
,
4586
(
1973
).
9.
G. P. K.
Smith
and
R. J.
Cross
, Jr.
,
J. Chem. Phys.
60
,
2125
(
1974
).
10.
R. F.
Stebbings
,
B. R.
Turner
, and
J. A.
Rutherford
,
J. Geophys. Res.
71
,
771
(
1966
).
11.
R.
Johnsen
and
M. A.
Biondi
,
J. Chem. Phys.
59
,
3504
(
1973
).
12.
M.
McFarland
,
D. L.
Albritton
,
F. C.
Fehsenfeld
,
E. E.
Ferguson
, and
A. L.
Schmeltekopf
,
J. Chem. Phys.
59
,
6620
(
1973
).
13.
D. L.
Albritton
,
I.
Dotan
,
W.
Lindinger
,
M.
McFarland
,
J.
Tellinghuisen
, and
F. C.
Fehsenfeld
,
J. Chem. Phys.
66
,
410
(
1977
).
14.
R.
Johnsen
and
M. A.
Biondi
,
J. Chem. Phys.
73
,
190
(
1980
).
15.
D.
Smith
,
N. G.
Adams
, and
T. M.
Miller
,
J. Chem. Phys.
69
,
308
(
1978
).
16.
J.
Glosik
,
A. B.
Rakshitt
,
N. D.
Twiddy
,
N. G.
Adams
, and
D.
Smith
,
J. Phys. B
11
,
3365
(
1978
).
17.
A. L.
Schmeltekopf
,
E. E.
Ferguson
, and
F. C.
Fehsenfeld
,
J. Chem. Phys.
48
,
2966
(
1968
).
18.
D. B.
Dunkin
,
F. C.
Fehsenfeld
,
A. L.
Schmeltekopf
, and
E. E.
Ferguson
,
J. Chem. Phys.
49
,
1365
(
1968
).
19.
E. E.
Ferguson
,
D. K.
Bohme
,
F. C.
Fehsenfeld
, and
D. B.
Dunkin
,
J. Chem. Phys.
50
,
5039
(
1969
).
20.
D. K.
Bohme
,
D. B.
Dunkin
,
F. C.
Fehsenfeld
, and
E. E.
Ferguson
,
J. Chem. Phys.
49
,
5201
(
1968
).
21.
G. F. O.
Langstroth
and
J. B.
Hasted
,
Discuss. Faraday Soc.
33
,
298
(
1962
).
22.
J.
Sayers
and
D.
Smith
,
Discuss. Faraday Soc.
37
,
167
(
1964
).
23.
D. K.
Bohme
,
D. B.
Dunkin
,
F. C.
Fehsenfeld
, and
E. E.
Ferguson
,
J. Chem. Phys.
51
,
863
(
1969
).
24.
J. J.
Kaufman
and
W. S.
Koski
,
J. Chem. Phys.
50
,
1942
(
1969
).
25.
T. F.
O’Malley
,
J. Chem. Phys.
52
,
3269
(
1970
).
26.
A.
Pipano
and
J. J.
Kaufman
,
J. Chem. Phys.
56
,
5258
(
1972
).
27.
D. G.
Hopper
,
Chem. Phys. Lett.
31
,
446
(
1975
).
28.
D. G.
Hopper
,
J. Am. Chem. Soc.
100
,
1019
(
1978
).
29.
D. G.
Hopper
,
J. Chem. Phys.
72
,
3679
(
1980
).
30.
D. G.
Hopper
,
J. Chem. Phys.
72
,
4676
(
1980
).
31.
D. G.
Hopper
,
J. Chem. Phys.
76
,
1068
(
1982
).
32.
D. G.
Hopper
,
J. Chem. Phys.
77
,
314
(
1982
).
33.
F. A.
Wolf
,
J. Chem. Phys.
44
,
1619
(
1966
).
34.
E. E. Ferguson, F. C. Fehsenfeld, and D. L. Albritton, in Gas Phase Ion Chemistry, edited by M. T. Bowers (Academic, New York, 1979), Vol. 1, p. 53.
35.
Although Rutherford and Vroom (Ref. 5) limit their discussion to the inability of O+(2D) to produce NO+, their analysis is equally valid for O+(2P). Given the efficiency at which O+(2P) is collisionally quenched to O+(4S), reaction (8), appreciable formation of NO+ from O+(2P) is highly unlikely.
36.
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
83
,
166
(
1985
).
37.
N. R.
Daly
,
Rev. Sci. Instrum.
31
,
264
(
1960
).
38.
At the low pressures of the present study, the probability of the jth order collision is given by (nlσL)j, where n is the number density of the N2 and l is the length of the interaction region (8.6 cm).
39.
P. A. M.
Van Koppen
,
P. R.
Kemper
,
A. J.
Illies
, and
M. T.
Bowers
,
Int. J. Mass Spectrom. Ion Proc.
54
,
263
(
1983
).
40.
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
84
,
6738
(
1986
).
41.
E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Jons in Gases, (Wiley, New York, 1973), Table 7‐1‐H‐1.
42.
E. W.
Rothe
and
R. B.
Bernstein
,
J. Chem. Phys.
31
,
1619
(
1959
).
43.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules, (Van Nostrand Reinhold, New York, 1979).
44.
T. F.
Moran
and
J. B.
Wilcox
,
J. Chem. Phys.
69
,
1397
(
1978
).
45.
C.
Ottinger
and
J.
Simonis
,
Chem. Phys.
28
,
97
(
1978
).
46.
A.
Henglein
and
K.
Lacmann
,
Adv. Mass Spectrom.
3
,
331
(
1966
);
A. Henglein, in Ion‐Molecule Reactions in the Gas Phase, edited by P. J. Ausloos (American Chemical Society, Washington, D.C., 1966), p. 63;
A.
Ding
,
K.
Lacmann
, and
A.
Henglein
,
Ber. Bunsenges. Phys. Chem.
71
,
596
(
1967
).
47.
C.
Lifshitz
,
R. L. C.
Wu
,
T. O.
Tiernan
and
D. T.
Terwillger
,
J. Chem. Phys.
68
,
247
(
1978
).
48.
M. E.
Weber
,
J. L.
Elkind
, and
P. B.
Armentrout
,
J. Chem. Phys.
84
,
1521
(
1986
).
49.
The best fit between the present cross section data and the fall‐off model presented in Ref. 48 corresponds to D = 9.76 eV,f = 1.0, and p = 4.0.
50.
L. D.
Landau
,
Phys. Z. Sowjetunion
2
,
46
(
1932
).
51.
C.
Zener
,
Proc. R. Soc. London Ser. A
137
,
696
(
1932
).
52.
A. P. M.
Baede
,
Ad. Chem. Phys.
30
,
463
(
1975
).
53.
J.
Tully
,
J. Chem. Phys.
61
,
61
(
1974
).
54.
L. A.
Viehland
and
E. A.
Mason
,
J. Chem. Phys.
66
,
422
(
1977
).
55.
S. L.
Lin
and
J. N.
Bardsley
,
J. Chem. Phys.
66
,
435
(
1977
).
56.
W.
Lindinger
and
D. L.
Albritton
,
J. Chem. Phys.
62
,
3517
(
1975
).
57.
I.
Dotan
,
W.
Lindinger
, and
D. L.
Albritton
,
J. Chem. Phys.
64
,
4544
(
1976
).
58.
D. L. Albritton, in Kinetics of Ion—Molecule Reactions, edited by P. J. Ausloos (Plenum, New York, 1979), p. 132.
This content is only available via PDF.
You do not currently have access to this content.