The quenching reaction Na(2P)+N2(1Σ+g,v,J)→Na(2S) +N2(1Σ+g,v′,J′) has been studied. Scattering calculations have been performed using the surface hopping trajectory method for the two energetically lowest potential energy surfaces of NaN2. The latter have been determined in an abinitio MRD‐CI treatment. They exhibit a (avoided) crossing where quenching is likely to occur. Model potentials, which are constructed along the lines given by the abinitio surfaces, are used to investigate the influence of the shape of the potential on the scattering process. Cross sections and final translational energy distributions are compared with experimental data. Alignment and orientation as expressed by the collision induced density matrix have also been considered. Theoretical and experimental results show good agreement. The detailed analysis of the scattering calculations have provided with a better understanding of the quenching process.

1.
For references see P. L. Lijnes, Review of Literature on Quenching, Excitation and Mixing Collision, Cross Sections for the First Resonance of the Alkalis, Report i 398, Physics Laboratory of Utrecht, The Netherlands, February 1972.
2.
I. V. Hertel, in The Dynamics of the Excited State, edited by K. Lawley (Wiley, New York, 1982), p. 475.
3.
I. V. Hertel, in The Excited State in Chemical Physics, edited by J. W. McGowan (Wiley, New York, 1981), p. 341.
4.
A. W.
Kleyn
,
J.
Los
, and
E. A.
Gislason
,
Phys. Rep.
90
,
1
(
1982
).
5.
J. C. Tully, in Dynamics of Molecular Collisions, edited by W. H. Miller (Plenum, New York, 1976), Part B, p. 217.
6.
E.
Bauer
,
E. R.
Fisher
, and
F. R.
Gilmore
,
J. Chem. Phys.
51
,
4173
(
1969
).
7.
H. S.
Taylor
,
Chem. Phys. Lett.
64
,
17
(
1979
).
8.
E. A.
Gislason
,
A. W.
Kleyn
, and
J.
Los
,
Chem. Phys.
59
,
91
(
1981
).
9.
C.
Bottcher
and
C. V.
Sukumar
,
J. Phys. B
10
,
2853
(
1977
).
10.
E. R.
Fisher
and
E.
Bauer
,
J. Chem. Phys.
57
,
1966
(
1972
).
11.
E. R.
Fisher
and
G. K.
Smith
,
Chem. Phys. Lett.
6
,
438
(
1970
).
12.
E. R.
Fisher
and
G. K.
Smith
,
Appl. Opt.
10
,
1803
(
1971
).
13.
E. R.
Fisher
and
G. K.
Smith
,
Chem. Phys. Lett.
13
,
448
(
1972
).
14.
G. M.
Kendall
and
R.
Grice
,
Mol. Phys.
24
,
1373
(
1972
).
15.
R. K.
Preston
and
J. C.
Tully
,
J. Chem. Phys.
54
,
4297
(
1971
).
16.
R. K.
Preston
and
J. C.
Tully
,
J. Chem. Phys.
55
,
562
(
1971
).
17.
P. J.
Kuntz
,
J.
Kendrick
, and
W. N.
Whitton
,
Chem. Phys. Lett.
38
,
147
(
1979
).
18.
P.
Archirel
and
P.
Habitz
,
Chem. Phys.
78
,
213
(
1983
).
19.
P.
Habitz
,
Chem. Phys.
54
,
131
(
1980
).
20.
N. C.
Blais
,
D. G.
Truhlar
, and
B. C.
Barrett
,
J. Chem. Phys.
78
,
2956
(
1983
).
21.
N. C.
Blais
and
D. G.
Truhlar
,
J. Chem. Phys.
79
,
1334
(
1983
).
22.
S.
Holloway
and
J. W.
Gadzuk
,
J. Chem. Phys.
82
,
5203
(
1985
).
23.
M. F.
Herman
,
J. Chem. Phys.
81
,
754
,
764
(
1984
).
24.
M. F.
Herman
,
J. Chem. Phys.
78
,
6010
(
1983
).
25.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
);
H. D.
Meyer
and
W. H.
Miller
,
71
,
2156
(
1979
); ,
J. Chem. Phys.
H. D.
Meyer
and
W. H.
Miller
,
72
,
2272
(
1980
).,
J. Chem. Phys.
26.
C. H.
Becker
and
R. P.
Saxon
,
J. Chem. Phys.
75
,
4899
(
1969
).
27.
P.
McGuire
and
J. C.
Bellum
,
J. Chem. Phys.
71
,
1975
(
1969
).
28.
W.
Reiland
,
C. P.
Schulz
,
H. U.
Tittes
, and
I. V.
Hertel
,
Chem. Phys. Lett.
91
,
329
(
1982
).
29.
W. Reiland, Thesis, 1982.
30.
W.
Reiland
,
G.
Jamieson
,
U.
Tittes
, and
I. V.
Hertel
,
Z. Phys. A
307
,
51
(
1982
).
31.
I. V. Hertel, in Fundamental Processes in Energetic Atomic Collisions, edited by H. O. Lutz, J. S. Briggs, and H. Kleinpoppen (Plenum, New York, 1983), p. 519.
32.
I. V. Hertel, in Physics of Electronic and Atomic Collisions, edited by S. Datz (North‐Holland, Amsterdam, 1982), p. 513.
33.
I. V.
Hertel
and
W.
Stoll
,
Adv. At. Mol. Phys.
13
,
113
(
1978
).
34.
N.
Anderson
,
Phys. Scr. T
6
,
130
(
1983
).
35.
F.
van den Berg
and
R.
Morgenstern
,
Chem. Phys.
90
,
125
(
1984
).
36.
F.
van den Berg
,
P.
Bijil
, and
R.
Morgenstern
,
Z. Phys. A
320
,
1
(
1985
).
37.
D.
Poppe
,
Z. Phys. D
1
,
207
(
1986
).
38.
J. R.
Barker
and
R. E.
Weston
,
J. Chem. Phys.
65
,
1427
(
1976
).
39.
I.
Tanarro
,
F.
Arqueros
, and
J.
Campos
,
J. Chem. Phys.
77
,
1826
(
1982
).
40.
(a)
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
(
1974
);
(b)
R. J.
Buenker
,
S. D.
Peyerimhoff
, and
W.
Butscher
,
Mol. Phys.
35
,
771
(
1978
).
41.
B. O.
Roos
and
P.
Siegbahn
,
Theor. Chim. Acta
17
,
209
(
1970
).
42.
W.
Reiland
,
H.‐U.
Tittes
,
I. V.
Hertel
,
V.
Bonačić‐Koutecký
, and
M.
Persico
,
J. Chem. Phys.
77
,
1908
(
1982
).
43.
P.
Botschwina
,
W.
Meyer
,
I. V.
Hertel
, and
W.
Reiland
,
J. Chem. Phys.
75
,
5438
(
1981
).
44.
D.
Papierowska‐Kaminski
,
M.
Persico
, and
V.
Bonačić‐Koutecký
,
Chem. Phys. Lett.
113
,
264
(
1985
).
45.
G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, Princeton, 1963).
46.
H. W.
Hermann
and
I. V.
Hertel
,
Commun. At. Mol. Phys.
12
,
61
(
1982
).
47.
A.
Fisher
and
I. V.
Hertel
,
Z. Phys. A
304
,
103
(
1982
).
48.
J.
Grosser
,
J. Phys. B
14
,
1449
(
1981
).
49.
I. V.
Hertel
,
H.
Schmidt
,
A.
Bähring
, and
E.
Meyer
,
Rep. Prog. Phys.
48
,
375
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.