Electron transmission spectroscopy is utilized to determine the vertical electron affinities and to characterize the temporary anion states of a series of alternant hydrocarbons including benzene, naphthalene, anthracene, tetracene, styrene, and cis‐ and trans‐stilbene. The vibrational structure present in the low lying resonances is interpreted in light of the charge distributions of the temporarily occupied orbitals. The energies of the anion states are compared with the predictions of PPP, PPP‐CI, and HAM calculations, the pairing theorem and with the results from optical absorption measurements on the ground state anions in rigid glasses.

1.
A general review of temporary negative ion formation in atoms and diatomic molecules is given by
G. J.
Schulz
,
Rev. Mod. Phys.
45
,
378
,
423
(
1973
).
2.
A brief review of the applications of electron transmission spectroscopy to hydrocarbon molecules is given by
K. D.
Jordan
and
P. D.
Burrow
,
Acc. Chem. Res.
11
,
341
(
1978
).
3.
(a)
L.
Sanche
and
G. J.
Schulz
,
Phys. Rev. A
5
,
1672
(
1972
);
(b)
L.
Sanche
and
G. J.
Schulz
,
6
,
69
,
2500
(
1972
); ,
Phys. Rev. A
(c)
L.
Sanche
and
G. J.
Schulz
,
J. Chem. Phys.
58
,
479
(
1973
);
(d)
I.
Nenner
and
G. J.
Schulz
,
J. Chem. Phys.
62
,
1747
(
1975
).,
J. Chem. Phys.
4.
T.
Koopmans
,
Physica
1
,
104
(
1934
).
5.
P. D.
Burrow
and
K. D.
Jordan
,
Chem. Phys. Lett.
36
,
594
(
1975
).
6.
(a)
K. D.
Jordan
,
J. A.
Michejda
, and
P. D.
Burrow
,
J. Am. Chem. Soc.
98
,
7189
(
1976
);
(b)
P. D.
Burrow
,
J. A.
Michejda
, and
K. D.
Jordan
,
J. Am. Chem. Soc.
98
,
6392
(
1976
).,
J. Am. Chem. Soc.
7.
P. D.
Burrow
and
K. D.
Jordan
,
J. Am. Chem. Soc.
104
,
5247
(
1982
).
8.
L. Salem, The Molecular Orbital Theory of Conjugated Systems (Benjamin, New York, 1966).
9.
C. A.
Coulson
and
G. S.
Rushbrooke
,
Proc. Cambridge Philos. Soc.
36
,
193
(
1940
);
A. D.
McLachlen
,
Mol. Phys.
4
,
49
(
1961
);
J.
Koutecky
,
J. Chem. Phys.
44
,
3702
(
1966
);
J.
Koutecky
,
47
,
1501
(
1967
).,
J. Chem. Phys.
10.
H. C.
Longuet‐Higgins
and
J. A.
Pople
,
Proc. Phys. Soc. A
68
,
591
(
1955
).
11.
K. D.
Jordan
and
P. D.
Burrow
,
Chem. Phys.
45
,
171
(
1980
).
12.
A.
Stamatovic
and
G. J.
Schulz
,
Rev. Sci. Instrum.
39
,
1752
(
1968
);
A.
Stamatovic
and
G. J.
Schulz
,
41
,
423
(
1970
).,
Rev. Sci. Instrum.
13.
A. R.
Johnston
and
P. D.
Burrow
,
J. Electron. Spectrosc. Relat. Phenom.
25
,
119
(
1982
).
14.
J. N. H.
Brunt
,
G. C.
King
, and
F. H.
Read
,
J. Phys. B
10
,
1289
(
1977
).
15.
P. D.
Burrow
,
J. A.
Michejda
, and
J.
Comer
,
J. Phys. B
9
,
3225
(
1976
).
16.
We assume here that the Franck‐Condon principle holds for these attachment processes. We point out however that the approximations behind this principle may break down. This has been noted, for example, in the N→V(π→*) transition of ethylene,
S. D.
Peyerimhoff
and
R. J.
Buenker
,
Theor. Chim. Acta
27
,
243
(
1972
).
17.
P. D.
Burrow
and
L.
Sanche
,
Phys. Rev. Lett.
28
,
333
(
1972
);
M. J.
Boness
and
G. J.
Schulz
,
Phys. Rev. A
9
,
1969
(
1974
).
18.
C. E.
Klots
and
R. N.
Compton
,
J. Chem. Phys.
67
,
1779
(
1977
).
19.
M. J. W.
Boness
,
I. W.
Larkin
,
J. B.
Hasted
, and
L.
Moore
,
Chem. Phys. Lett.
1
,
292
(
1967
).
20.
K. D.
Jordan
,
J. A.
Michejda
, and
P. D.
Burrow
,
J. Am. Chem. Soc.
98
,
1295
,
7189
(
1976
).
21.
D.
Mathur
and
J. B.
Hasted
,
J. Phys. B
9
,
L31
(
1976
).
22.
J. R.
Frazier
,
L. G.
Christophorou
,
J. G.
Carter
, and
H. C.
Schweinler
,
J. Chem. Phys.
69
,
3807
(
1978
).
23.
M.
Allan
,
Helv. Chim. Acta
65
,
2008
(
1982
).
24.
S. F.
Wong
and
G. J.
Schulz
,
Phys. Rev. Lett.
35
,
1429
(
1975
).
25.
J. N.
Bardsley
and
J.
Mandl
,
Rep. Progr. Phys.
31
,
471
(
1968
).
26.
L. G.
Christophorou
,
D. L.
McCorkle
, and
J. G.
Carter
,
J. Chem. Phys.
60
,
3779
(
1974
).
27.
G. J.
Schulz
,
Phys. Rev.
112
,
150
(
1958
).
28.
G. Herzberg, Infrared and Raman Spectra (Van Nostrand Reinhold, New York, 1945);
G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966).
29.
L.
Åsbrink
,
E.
Lindholm
, and
O.
Edqvist
,
Chem. Phys. Lett.
5
,
609
(
1970
).
30.
A. L.
Hinde
,
D.
Poppinger
, and
L.
Radom
,
J. Am. Chem. Soc.
100
,
4681
(
1978
).
31.
N. O.
Lipari
,
C. B.
Duke
, and
L.
Pietronero
,
J. Chem. Phys.
65
,
1165
(
1976
).
32.
J. E. Wertz and J. R. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications (McGraw‐Hill, New York, 1972).
33.
R.
Azria
and
G. J.
Schulz
,
J. Chem. Phys.
62
,
573
(
1975
).
See also
K. C.
Smyth
,
J. A.
Schiavone
, and
R. S.
Freund
,
J. Chem. Phys.
61
,
1782
,
1789
(
1974
).,
J. Chem. Phys.
34.
R. N.
Compton
,
R. H.
Huebner
,
P. W.
Reinhardt
, and
L. G.
Christophorou
,
J. Chem. Phys.
48
,
901
(
1968
).
35.
M. N.
Pisanias
,
L. G.
Christophorou
, and
J. G.
Carter
,
Chem. Phys. Lett.
13
,
433
(
1972
).
36.
D.
Mathur
and
J. B.
Hasted
,
Chem. Phys. Lett.
48
,
50
(
1977
).
37.
M. Allan, Lecture Notes in Chemistry, edited by F. A. Gianturco and G. Stefani (Springer, Berlin 1984), Vol. 35, p. 14.
38.
P. A.
Clark
,
F.
Brogli
, and
E.
Hielbronner
,
Helv. Chim. Acta
55
,
1415
(
1972
).
39.
L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules (Wiley, New York, 1974), p. 365.
40.
The leading f values in partial wave expansions may be found in tables from
F. H.
Read
,
J. Phys. B
1
,
893
(
1968
).
41.
J. M.
Younkin
,
L. J.
Smith
, and
R. N.
Compton
,
Theor. Chim. Acta (Berl.)
41
,
157
(
1976
);
R. N.
Compton
,
Y.
Yoshioka
, and
K. D.
Jordan
,
Theor. Chim. Acta
54
,
529
(
1980
).
42.
L.
Asbrink
,
C.
Fridh
, and
D.
Lindholm
,
Chem. Phys. Lett.
52
,
72
(
1977
);
E. Lindholm and L. Åsbrink, Molecular Orbitals and Their Energies Studied by the Semiempirical HAM Method, Lecture Notes in Chemistry, Vol. 38 (Springer, Berlin, 1985).
43.
L.
Åsbrink
,
C.
Fridh
, and
E.
Lindholm
,
Z. Naturforsch. Teil A
33
,
172
(
1978
).
44.
W. E.
Wentworth
,
E.
Chen
, and
J. E.
Lovelock
,
J. Phys. Chem.
70
,
445
(
1966
).
45.
L. G.
Christophorou
and
E. L.
Chaney
,
J. Chem. Phys.
52
,
2165
(
1970
).
46.
T.
Shida
and
S.
Iwata
,
J. Am. Chem. Soc.
95
,
3473
(
1973
).
47.
R.
Zahradnik
and
P.
Carsky
,
J. Phys. Chem.
74
,
1240
(
1970
).
48.
T.
Bally
,
S.
Nitsche
,
K.
Roth
, and
E.
Haselbach
,
J. Am. Chem. Soc.
106
,
3927
(
1984
).
49.
J.
Spanget‐Larsen
,
Croatica Chem. Acta
57
,
991
(
1984
).
50.
P. A.
Clark
,
F.
Brogli
, and
E.
Heilbronner
,
Helv. Chim. Acta
55
,
1415
(
1972
).
51.
T.
Munakata
,
K.
Ohno
,
Y.
Harada
, and
K.
Kuchitsu
,
Chem. Phys. Lett.
83
,
243
(
1981
).
52.
R. J.
Hemley
,
D. G.
Leopold
,
V.
Vaida
, and
M.
Karplus
,
J. Chem. Phys.
82
,
5379
(
1985
).
53.
M.
Beez
,
G.
Bieri
,
H.
Bock
, and
E.
Heilbronner
,
Helv. Chem. Acta
56
,
1028
(
1973
).
54.
M. J. S.
Dewar
and
S. D.
Worley
,
J. Chem. Phys.
50
,
654
(
1969
).
55.
T.
Kobayashi
,
K.
Yokota
, and
S.
Nagakura
,
Bull. Chem. Soc. Jpn.
48
,
412
(
1975
).
56.
L. A.
Carreira
and
T. G.
Towns
,
J. Chem. Phys.
63
,
5283
(
1975
).
57.
T.
Shida
,
S.
Iwata
, and
M.
Imamura
,
J. Phys. Chem.
78
,
741
(
1974
).
58.
M.
Traetteberg
,
E. B.
Frantsen
,
F. C.
Mijlhoff
, and
A.
Hoekstra
,
J. Mol. Struct.
26
,
57
(
1975
);
M.
Traetteberg
and
E. B.
Frantsen
,
J. Mol. Struct.
26
,
69
(
1975
).,
J. Mol. Struct.
59.
The fitting parameters were derived from anion states in naphthalene. No attempt was made to optimize them over the set of molecules discussed here.
This content is only available via PDF.
You do not currently have access to this content.