The rates for gas‐phase hydrolysis of SOF2 (thionylfluoride) and SOF4 (thionyl tetrafluoride) have been measured at a temperature of 298 K. The second order rate constant for SOF2 hydrolysis in SF6 buffer gas was found to have the value (1.2±0.3)×1023 cm3/s which agrees with previous estimates of Sauers etal., but is three orders of magnitude lower than the value obtained by Rüegsegger etal. at 340 K. The rate constant for SOF4 hydrolysis has not previously been measured and its value in both SF6 and N2 buffer gases was found here to be (1.0±0.3)×1021 cm3/s.

1.
D. Hänssgen and E. Odenhausen, Gmelin Handbuch der Anorganischen Chemie, S. Erg., Thionylhalogenide (Springer, Berlin, 1978), Bd. 1, pp. 16–17.
2.
G.
Olah
and
S.
Kuhn
,
Z. Anorg. Allgem. Chem.
287
,
282
(
1956
).
3.
F. B.
Dudley
,
G. H.
Cady
, and
D. F.
Eggers
,
J. Am. Chem. Soc.
78
,
1553
(
1956
).
4.
D. D.
Wagman
,
W. H.
Evans
,
V. B.
Parker
,
R. H.
Schumm
,
I.
Halow
,
S. M.
Bailey
,
K. L.
Churney
, and
R. L.
Nuttall
,
J. Phys. Chem. Ref. Data
11
, Suppl.
2
(
1982
).
5.
At the present time there is considerable uncertainty about the heats of formation for SOF2 and SOF4. Recent revised estimates of the heats of formation for these molecules would indicate that SOF2 hydrolysis is slightly exothermic at 298 K and SOF4 hydrolysis is more exothermic than indicated here [see J. T. Herron, J. Phys. Chem. Ref. Data (in press)].
6.
I. O.
Leipunskii
,
A. K.
Lyubimova
,
A. A.
Nadeikin
,
A. I.
Nikitin
, and
V. L.
Tal’roze
,
Sov. J. Quantum Electron.
12
,
413
(
1982
).
7.
W.
Rüegsegger
,
R.
Meier
,
F. K.
Kneubühl
, and
H. J.
Schötzau
,
Appl. Phys. B
37
,
115
(
1985
).
8.
I.
Sauers
,
J. L.
Adock
,
L. G.
Christophorou
, and
H. W.
Ellis
,
J. Chem. Phys.
83
,
2618
(
1985
);
I.
Sauers
,
H. W.
Ellis
, and
L. G.
Christophorou
,
IEEE Trans. Electr. Insul.
EI‐21
,
111
(
1986
).
9.
R. J.
Van Brunt
,
Natl. Bur. Stand. J. Res.
90
,
229
(
1985
).
10.
H. Latour‐Slowikowska, J. Lampe, and J. Slowikowski, Proceedings of the Fourth International Symposium on Gaseous Dielectrics (Pergamon, New York, 1984), pp. 286–291.
11.
B.
Siegel
and
P.
Breisacher
,
J. Inorg. Nucl. Chem.
31
,
675
(
1969
).
12.
R.
d’Agostino
and
D. L.
Flamm
,
J. Appl. Phys.
52
,
162
(
1981
).
13.
H. J. Emeleus and B. Tittle, J. Chem. Soc. 1963, 1644.
14.
G.
Bruno
,
P.
Capezzuto
, and
F.
Cramarossa
,
J. Fluoresc. Chem.
14
,
115
(
1979
).
15.
C. Boudene, J. Cluet, G. Keib, and G. Wind, Rev. Gen. Electr. No. Special 45 (1974).
16.
H.
Grasselt
,
W.
Ecking
, and
H. J.
Polster
,
Elektrie
32
,
369
(
1978
).
17.
T. R.
Ophel
,
D. C.
Weisser
,
A.
Cooper
,
L. K.
Fifield
, and
G. D.
Putt
,
Nucl. Instrum. Methods
217
,
383
(
1983
).
18.
R. J.
Van Brunt
,
J. Appl. Phys.
59
,
2314
(
1986
).
19.
A. C.
Jason
and
J. L.
Wood
,
Proc. Phys. Soc. London Sect. B
68
,
1105
(
1955
).
20.
R. L. Brown, Natl. Bur. Stand. Interagency Report No. NBSIR 81‐2281 (1981).
21.
J. T. Herron, Proceedings of the Fourth International Symposium on Gaseous Dielectrics (Pergamon, New York, 1984), p. 273.
22.
K. D.
Asmus
,
W.
Grunbein
, and
J. H.
Fendler
,
J. Am. Chem. Soc.
92
,
2625
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.