The formation of a gel‐like sediment by a process of irreversible single‐particle accretion has been simulated in three dimensions by the computational technique of Brownian dynamics. The model incorporates hydrodynamic interactions between spherical particles at the level of the Rotne–Prager approximation, and colloidal interactions are described in terms of the Derjaguin–Landau–Verwey–Overbeek (DLVO) pair potential of mean force for electrostatically stabilized particles. The density and structure of simulated sediments have been determined as a function of ionic strength and sedimenting field strength. Depending on the conditions, sediment volume fractions range from 0.09 to 0.33. Colloidal forces can significantly affect the short‐range structure of low‐density diffusion‐controlled sediments. Sediment density increases strongly with increasing field strength, and sediment structures as measured by the particle pair distribution function become more liquid‐like as the volume fraction increases. Hydrodynamic interactions have little effect on aggregate structure at low field strengths where Brownian aggregation is dominant, but the presence of hydrodynamic interactions is essential for the formation of high‐density sediments at high field strengths. This work suggests that, in general, colloidal forces and hydrodynamic interactions cannot be neglected in simulations of colloidal aggregration and gelation.

1.
T. A.
Witten
and
L. M.
Sander
,
Phys. Rev. Lett.
47
,
1400
(
1981
).
2.
See, for instance, Kinetics of Aggregation and Gelation, edited by F. Family and D. P. Landau (Elsevier, Amsterdam, 1984);
and On Growth and Form: Fractal and Non‐Fractal Patterns in Physics, edited by H. E. Stanley and N. Ostrowsky (Martinus Nijhoff, Dordrecht, 1986).
3.
A. J.
Hurd
and
D. W.
Schaefer
,
Phys. Rev. Lett.
54
,
1048
(
1985
).
4.
D. A.
Weitz
,
J. S.
Huang
,
M. Y.
Lin
, and
J.
Sung
,
Phys. Rev. Lett.
54
,
1416
(
1985
).
5.
G. Y.
Onoda
,
Phys. Rev. Lett.
55
,
226
(
1985
).
6.
A. J.
Armstrong
,
R. C.
Mocklet
, and
W. J.
O’Sullivan
,
J. Phys. A
19
,
L123
(
1986
).
7.
E.
Dickinson
,
Chem. Soc. Rev.
14
,
421
(
1985
).
8.
J.
Bacon
,
E.
Dickinson
, and
R.
Parker
,
Faraday Discuss. Chem. Soc.
76
,
165
(
1983
).
9.
G. C.
Ansell
and
E.
Dickinson
,
Chem. Phys. Lett.
122
,
594
(
1985
).
10.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
);
S. A.
Allison
and
J. A.
McCammon
,
Biopolymers
23
,
167
(
1984
).
11.
P.
Meakin
,
Phys. Rev. A
27
,
2616
(
1983
).
12.
Z.
Racz
and
T.
Vicsek
,
Phys. Rev. Lett.
51
,
2382
(
1983
).
13.
P.
Meakin
,
J. Colloid Interface Soc.
104
,
282
(
1985
).
14.
R. F.
Voss
and
M.
Tomkiewicz
,
J. Electrochem. Soc.
132
,
371
(
1985
).
15.
P.
Turq
,
F.
Lantelme
, and
H. L.
Friedman
,
J. Chem. Phys.
66
,
3039
(
1977
).
16.
D. L.
Ermak
and
H.
Buckholz
,
J. Comput. Phys.
35
,
169
(
1980
).
17.
W. F.
van Gunsteren
,
H. J. C.
Berendsen
, and
J. A. C.
Rullmann
,
Mol. Phys.
44
,
69
(
1981
).
18.
F. J.
Vesely
,
Mol. Phys.
53
,
505
(
1984
).
19.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
20.
E.
Dickinson
,
S. A.
Allison
, and
J. A.
McCammon
,
J. Chem. Soc. Faraday Trans. 2
81
,
591
(
1985
).
21.
G. K.
Batchelor
,
J. Fluid Mech.
74
,
1
(
1976
).
22.
B. U.
Felderhof
,
Physica A
89
,
373
(
1977
);
R.
Schmitz
and
B. U.
Felderhof
,
Physica A
116
,
163
(
1982
).,
Physica A
23.
R. B.
Jones
and
G. S.
Burfield
,
Physica A
133
,
152
(
1985
).
24.
P.
Mazur
and
W.
van Saarloos
,
Physica A
115
,
21
(
1982
).
25.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
26.
J.
Garcia de la Torre
and
V. A.
Bloomfield
,
Q. Rev. Biophys.
14
,
81
(
1981
).
27.
J.
Bacon
,
E.
Dickinson
,
R.
Parker
,
N.
Anastasiou
, and
M.
Lai
,
J. Chem. Soc. Faraday Trans. 2
79
,
91
(
1983
).
28.
E. J. W. Verwey and J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
29.
J. Mahanty and B. W. Ninham, Dispersion Forces (Academic, London, 1976).
30.
P.
Meakin
,
J. Colloid Interface Sci.
96
,
415
(
1983
).
31.
D.
Bensimon
,
E.
Domany
, and
A.
Aharony
,
Phys. Rev. Lett.
51
,
1394
(
1983
).
32.
B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
33.
E.
Dickinson
and
R.
Parker
,
J. Colloid Interface Sci.
97
,
220
(
1984
).
34.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
35.
D. W.
Schaefer
and
K. D.
Keefer
,
Phys. Rev. Lett.
56
,
2199
(
1986
).
36.
N. A.
Seaton
and
E. D.
Glandt
,
J. Chem. Phys.
84
,
4595
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.