A theory is presented to study the exchange broadening of isotropic Raman bands due to ultrarapid proton‐transfer reactions. It represents a generalization of standard theories of Raman band profiles of nonreactive liquids. The variables describing the reaction are assumed to represent a dichotomic Markovian process. The spectral behavior of various AH/H2O mixtures is studied as a function of the exchange rate and the interplay of various band shaping mechanisms is discussed in detail. Finally, the potentialities of the Raman spectroscopy as a tool to measure the rate constant are critically assessed.

1.
M. M.
Kreevoy
and
C. A.
Mead
,
J. Am. Chem. Soc.
84
,
4596
(
1962
).
2.
M. M.
Kreevoy
and
C. A.
Mead
,
Discuss. Faraday Soc.
39
,
166
(
1965
).
3.
A. K.
Covington
,
M. J.
Tait
, and
L.
Wynne‐Jones
,
Discuss. Faraday Soc.
39
,
172
(
1965
).
4.
A. K.
Covington
,
J. G.
Freeman
, and
T. H.
Willey
,
J. Phys. Chem.
74
,
3773
(
1970
).
5.
D. E.
Irish
and
H.
Chen
,
J. Phys. Chem.
74
,
3796
(
1970
).
6.
H.
Chen
and
D. E.
Irish
,
J. Phys. Chem.
75
,
2672
(
1971
).
7.
S.
Ikawa
,
M.
Yamada
, and
M.
Kimura
,
J. Raman Spectrosc.
6
,
89
(
1977
).
8.
J.‐Cl. Lassègues and J. Davaure, in Protons and Ions Involved in Fast Dynamic Phenomena, edited by P. Laszlo (Elsevier, Amsterdam, 1978), p. 157.
9.
H.
Strehlow
,
I.
Wagner
, and
P.
Hildebrandt
,
Ber. Bunsenges. Phys. Chem.
87
,
516
(
1983
).
10.
H. M.
MacConnell
,
J. Chem. Phys.
28
,
430
(
1958
).
11.
R. A.
MacPhail
and
H. L.
Strauss
,
J. Chem. Phys.
82
,
1156
(
1985
).
12.
S. Bratos, in Vibrational Spectroscopy of Molecular Liquids and Solids, edited by S. Bratos and R. M. Pick (Plenum, New York, 1980), p. 43.
13.
S.
Bratos
and
E.
Marechal
,
Phys. Rev. A
4
,
1078
(
1971
).
14.
N. G.
Van Kampen
,
Physica
74
,
215
(
1974
).
15.
R. Kubo, in Fluctuation, Relaxation and Resonance in Magnetic Systems, D. Ter Haar (Oliver and Boyd, Edinburgh, 1962), p. 23.
16.
S.
Bratos
and
J. P.
Chestier
,
Phys. Rev. A
9
,
2136
(
1974
).
17.
P. W.
Anderson
,
J. Phys. Soc. Jpn.
9
,
316
(
1954
).
18.
D.
Cavagnat
and
J.
Lascombe
,
J. Chem. Phys.
76
,
4336
(
1982
).
19.
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North‐Holland, Amsterdam, 1981).
20.
B. J.
Berne
and
R.
Giniger
,
Biopolym.
12
,
1161
(
1973
).
21.
The difference in the method of calculation employed by these authors should be pointed out. In the present theory, the kinetic correlation function was calculated by supposing (t),ω(t)] to be a dichotomic Markovian process. In Ref. (20), the macroscopic hydrodynamics of reactive fluids was applied.
This content is only available via PDF.
You do not currently have access to this content.