A general unitary time evolution method for wave packets defined on a fixed ℒ2 basis is developed. It is based on the Lanczos reduction of the full N×N Hamiltonian to a p‐dimensional subspace defined by the application of Hp−1 times to the initial vector. Unitary time evolution in the subspace is determined by exp{−iHpt}, retaining accuracy for a time interval τ, which can be estimated from the Lanczos reduced Hamiltonian Hp. The process is then iterated for additional time intervals. Although accurate results over long times can be obtained, the process is most efficient for large systems over short times. Time evolution employing this method in one‐ (unbounded) and two‐dimensional (bounded) potentials are done as examples using a distributed Gaussian basis. The one‐dimensional application is to direct evaluation of a thermal rate constant for the one‐dimensional Eckart barrier.

1.
E. A.
McCullogh
and
R. E.
Wyatt
,
J. Chem. Phys.
51
,
1253
(
1969
).
2.
R.
Kosloff
and
D.
Kosloff
,
J. Chem. Phys.
79
,
1823
(
1983
).
3.
G.
Drolshagen
and
E. J.
Heller
,
J. Chem. Phys.
79
,
2072
(
1983
).
4.
R.
Kosloff
and
C.
Cerjan
,
J. Chem. Phys.
81
,
3722
(
1984
).
5.
R. C.
Mowrey
and
D. J.
Kouri
,
Chem. Phys. Lett.
119
,
285
(
1985
);
R. C.
Mowrey
and
D. J.
Kouri
,
J. Chem. Phys.
84
,
6466
(
1986
).
6.
S.
Sawada
and
H.
Metiu
,
J. Chem. Phys.
84
,
227
(
1986
);
B.
Jackson
and
H.
Metiu
,
J. Chem. Phys.
82
,
5707
(
1985
); ,
J. Chem. Phys.
B.
Jackson
and
H.
Metiu
,
83
,
1952
(
1985
).,
J. Chem. Phys.
7.
K. C.
Kulander
and
E. J.
Heller
,
J. Chem. Phys.
69
,
2439
(
1978
).
8.
M. J.
Davis
and
E. J.
Heller
,
J. Chem. Phys.
80
,
5036
(
1984
).
9.
K. M.
Christoffel
and
J. M.
Bowman
,
J. Chem. Phys.
74
,
5057
(
1981
).
10.
E. J.
Heller
,
J. Chem. Phys.
75
,
2923
(
1981
).
11.
R. D.
Coalson
and
M.
Karplus
,
Chem. Phys. Lett.
90
,
301
(
1982
).
12.
H.
Tal‐Ezer
and
R.
Kosloff
,
J. Chem. Phys.
81
,
3967
(
1984
).
13.
I. P.
Hamilton
and
J. C.
Light
,
J. Chem. Phys.
84
,
306
(
1986
).
14.
C.
Lanczos
,
J. Res. Natl. Bur. Stand.
45
,
255
(
1950
).
15.
R.
Haydock
,
Solid State Phys.
35
,
216
(
1980
).
16.
A.
Nauts
and
R. E.
Wyatt
,
Phys. Rev. Lett.
51
,
2238
(
1983
);
A.
Nauts
and
R. E.
Wyatt
,
Phys. Rev. A
30
,
872
(
1984
).
17.
R. A.
Friesner
and
R. E.
Wyatt
,
J. Chem. Phys.
82
,
1973
(
1985
).
18.
E. B. Stechel (private communication).
19.
R. Jones, in The Recursion Method and its Applications, edited by D. G. Pettifor and D. L. Weaire (Springer, Berlin, 1985), p. 132.
20.
W. H.
Miller
,
J. Chem. Phys.
61
,
1823
(
1974
).
21.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
);
K.
Yamashita
and
W. H.
Miller
,
J. Chem. Phys.
82
,
5475
(
1985
).,
J. Chem. Phys.
22.
R. E.
Wyatt
,
Chem. Phys. Lett.
121
,
301
(
1985
).
23.
C. W.
McCurdy
and
B. C.
Garrett
,
J. Chem. Phys.
84
,
2630
(
1986
).
24.
S.
Nordholm
and
S. A.
Rice
,
J. Chem. Phys.
61
,
768
(
1974
).
25.
M. J.
Davis
and
E. J.
Heller
,
J. Chem. Phys.
71
,
3383
(
1979
).
26.
G.
Hose
and
H. S.
Taylor
,
J. Chem. Phys.
76
,
5356
(
1982
).
27.
J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. 1, Theory (Birkhäuser, Boston, 1985).
This content is only available via PDF.
You do not currently have access to this content.