Potasium (Kxx<40) and sodium (Nax, x<66) clusters were generated in molecular beams and probed by photoionization mass spectroscopy. Results obtained include measurements of neutral cluster abundances and determinations of ionization potentials. The I. P. values can be rationalized in terms of a global electrostatic model which extrapolates to the bulk work function. This model also applies to transition metals as can be shown by comparng it to the limited experimental data sets available. The I. P.’s of small clusters exhibit ‘‘quantum size’’ effects which can be understood by individual quantum chemical calculations. As previously found for sodium clusters, photoionization mass spectra obtained for potassium, mixed potassium/sodium and potassium/lithium exhibit abundance maxima at M+8 and M+20, where M is an alkali metal. This has been interpreted in terms of increased thermodynamic stability of the corresponding neutrals relative to neighboring clusters. We present data which show that a spherical jellium model, while providing a set of numbers correlating well with those of preferred stability in alkali clusters, is less successful in explaining other properties.

1.
H.
Fröhlich
,
Physica
4
,
406
(
1937
).
2.
R.
Kubo
,
J. Phys. Soc. Jpn.
17
,
975
(
1962
).
3.
L.
Gor’kov
and
G.
Eliashberg
,
Sov. Phys. JETP
21
,
940
(
1965
).
4.
S.
Strässler
,
M.
Rice
, and
P.
Wyder
,
Phys. Rev. B
6
,
2575
(
1972
).
5.
M.
Rice
,
W.
Schneider
, and
S.
Strässler
,
Phys. Rev. B
8
,
474
(
1973
).
6.
R.
Denton
,
B.
Mühlschlegel
, and
D.
Scalapino
,
Phys. Rev. Lett.
26
,
707
(
1971
).
7.
D.
Wood
and
N.
Ashcroft
,
Phys. Rev. B
25
,
6255
(
1982
).
8.
M.
Cini
and
P.
Ascarelli
,
J. Phys. F
4
,
1998
(
1974
);
M.
Cini
,
J. Catal.
37
,
187
(
1975
).
9.
N. Mott, Metal‐Insulator Transitions (Taylor & Francis, London, 1974).
10.
J.
Martins
,
J.
Buttet
, and
R.
Car
,
Phys. Rev. Lett.
53
,
655
(
1984
);
J.
Martins
,
J.
Buttet
, and
R.
Car
,
Phys. Rev. B
31
,
1804
(
1985
).
11.
G.
Pacchioni
and
J.
Koutecký
,
J. Chem. Phys.
81
,
3588
(
1984
).
12.
W. Gerber, Ph.D. thesis, University of Bern, 1980;
W.
Gerber
and
E.
Schumacher
,
J. Chem. Phys.
69
,
1692
(
1978
).
13.
R.
Martin
and
E.
Davidson
,
Mol. Phys.
35
,
1713
(
1978
).
14.
M. Kappes and E. Schumacher, in Electronic and Atomic Collisions, edited by J. Eichler, I. Hertel, and N. Stolterfoht (Elsevier, Amsterdam, 1984).
15.
M.
Kappes
,
R.
Kunz
, and
E.
Schumacher
,
Chem. Phys. Lett.
91
,
413
(
1982
).
16.
W.
Knight
,
K.
Clemenger
,
W.
de Heer
,
W.
Saunders
,
M.
Chou
, and
M.
Cohen
,
Phys. Rev. Lett.
52
,
2141
(
1984
).
17.
M.
Kappes
,
P.
Radi
,
M.
Schär
, and
E.
Schumacher
,
Chem. Phys. Lett.
113
,
243
(
1985
).
18.
M.
Kappes
,
K.
Marti
,
P.
Radi
,
M.
Schär
, and
E.
Schumacher
,
Chem. Phys. Lett.
107
,
6
(
1984
).
19.
O. Hagena, in Molecular Beams and Low Density Gasdynamics, edited by P. Wegener (Dekker, New York, 1974).
20.
J.
Searcy
and
J.
Fenn
,
J. Chem. Phys.
61
,
5282
(
1974
);
W.
Ploch
and
W.
Walcher
,
Rev. Sci. Instrum.
22
,
1028
(
1951
).
21.
M. Kappes, P. Radi, and E. Schumacher (in preparation).
22.
See, for example:
M.
Morse
,
G.
Hansen
,
P.
Langridge‐Smith
,
L.
Zheng
,
M.
Geusic
,
D.
Michalopoulos
, and
R.
Smalley
,
J. Chem. Phys.
80
,
5400
(
1984
).
23.
A.
Herrmann
,
E.
Schumacher
, and
L.
Wöste
,
J. Chem. Phys.
68
,
2327
(
1978
). Note that this publication already contains a brief discussion of the jellium model (with a finite step potential) and its failure to predict ionization potentials.
24.
M.
Kappes
,
P.
Radi
,
E.
Schumacher
, and
M.
Schär
,
Chem. Phys. Lett.
119
,
11
(
1985
).
25.
M.
Kappes
,
M.
Schär
, and
E.
Schumacher
,
J. Phys. Chem.
89
,
1499
(
1985
).
26.
M. Kappes, M. Schär, P. Radi, and E. Schumacher (in preparation).
27.
A lower limit for the temperature of our clusters is given by the terminal translational temperature of atomic potassium for the expansion conditions used. For sonic nozzles (cylindrical) the number obtained is 5 K (using relationships given in
H.
Bennewitz
and
G.
Buess
,
Chem. Phys.
28
,
175
(
1978
)). We have experimentally ascertained that dimers in these expansions are significantly hotter. An extreme upper limit for the temperature of K39 (probably the hottest species studied) can be obtained from the Thomson‐Kelvin relation, which describes the increase in vapor pressure of a sphere relative to a flat surface. If we assume an 8 Å radius, a background pressure of 1.5×10−6 Torr, a minimal expansion zone pressure of 10−5 Torr (before collisions cease), and a macroscopic surface tension we obtain a maximum cluster temperature of 500 K.
28.
This effect has been quantified in a model calculation for mixed alkali trimers:
G.
Hart
and
P.
Goodfriend
,
J. Chem. Phys.
62
,
1306
(
1975
).
29.
D.
Lindsay
and
G.
Thompson
,
J. Chem. Phys.
77
,
1114
(
1984
);
M. Kappes, P. Radi, H.‐P. Härri, and E. Schumacher, Chem. Phys. Lett. (to be published).
30.
G.
Natanson
,
F.
Amar
, and
R.
Berry
,
J. Chem. Phys.
78
,
399
(
1983
);
R.
Berry
,
J.
Jellinek
, and
G.
Natanson
,
Chem. Phys. Lett.
107
,
227
(
1984
);
R.
Berry
,
J.
Jellinek
, and
G.
Natanson
,
Phys. Rev. A
30
,
919
(
1984
).
31.
Electron affinities used were 0.543(10) and 0.5012(5) eV for Na and K, respectively; from: W. Lineberger, in Laser Spectroscopy, edited by R. Brewer and A. Mooradian (Plenum, New York, 1974).
32.
E.
Schumacher
,
M.
Kappes
,
K.
Marti
,
P.
Radi
,
M.
Schär
, and
B.
Schmidhalter
,
Ber. Bunsenges. Phys. Chem.
88
,
220
(
1984
).
33.
κσ values used were 0.3429 and 0.5060 Å for sodium and potassium, respectively. Surface tensions (at the melting points) were from Ref. 37, p. F‐25. Adiabatic compressibilities at the melting temperature are from: Gmelin, Handbook of Inorganic Chemistry (Verlag Chemie, Weinheim, 1970).
34.
C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976). Atomic volumes and lattice constants used in determining Rinf are from this source: Values used were: 2.080, 2.573, 1.776, 1.934, and 1.411 Å for Na, K, Hg, Fb, and Fe, respectively.
35.
J.
Smith
,
J. Am. Inst. Aeronaut. Astronaut.
3
,
648
(
1965
).
36.
D.
Wood
,
Phys. Rev. Lett.
46
,
749
(
1981
).
37.
Handbook of Chemistry and Physics, 60th ed. (CRC, Boca Raton, FL, 1980), p. E‐82.
38.
A.
Hoareau
,
B.
Cabaud
, and
P.
Melinon
,
Surf. Sci.
106
,
195
(
1981
).
39.
Y.
Saito
,
K.
Yamauchi
,
K.
Mihama
, and
T.
Noda
,
Jpn. J. Appl. Phys.
21
,
L
396
(
1982
).
40.
E. A.
Rohlfing
,
D.
Cox
,
A.
Kaldor
, and
K.
Johnson
,
J. Chem. Phys.
81
,
3846
(
1984
).
41.
E. A.
Rohlfing
,
D.
Cox
, and
A.
Kaldor
,
J. Phys. Chem.
88
,
4497
(
1984
).
42.
A. Kaldor (personal communication).
43.
In contrast to Knight’s measurements, we observed relative abundance maxima at Na7,Na9, and Na38 (Ref. 17). Minima in the ion distributions were however observed at the same positions in both measurements (9, 22, and 41 atoms). This minor discrepancy is perhaps due to differences in cluster internal energy. In our experiments the clusters were somewhat hotter because of less stringent expansion conditions. Another interpretation is that the two experiments probe neutrals at different times after formation and that discrepancies are due to time dependent fragmentation of metastable neutrals.
44.
J.
Martins
,
R.
Car
, and
J.
Buttet
,
Surf. Sci.
106
,
265
(
1981
).
45.
W.
Ekardt
,
Phys. Rev. B
29
,
1558
(
1984
).
46.
D.
Beck
,
Solid State Commun.
49
,
381
(
1984
).
47.
M.
Chou
,
A.
Cleland
, and
M.
Cohen
,
Solid State Commun.
52
,
645
(
1984
).
48.
The nomenclature used in describing the degenerate levels (n,l) is analogous to the nomenclature used in the spherically symmetric Coulomb field problem (i.e., electron around an atomic nucleus) with the important difference that for electron shells in atoms it is more convenient to define the main quantum number r as n+1; see: T. Mayer‐Kuckuk, Physik der Atomkeme (Teubner, Stuttgart, 1970).
49.
J.
Flad
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
71
,
3042
(
1979
).
50.
M. Kappes, P. Radi, M. Schär, and E. Schumacher, Helv. Chim. Acta (to be published).
51.
W.
Knight
,
K.
Clemenger
,
W.
de Heer
, and
W.
Saunders
,
Phys. Rev. B.
31
,
2539
(
1985
).
52.
M.
Puska
,
R.
Nieminen
, and
M.
Manninen
,
Phys. Rev. B
31
,
3486
(
1985
).
53.
O.
Echt
,
K.
Sattler
, and
E.
Recknagel
,
Phys. Rev. Lett.
47
,
1121
(
1981
).
54.
J.
Mühlbach
,
E.
Recknagel
, and
K.
Sattler
,
Surf. Sci.
106
,
188
(
1981
).
55.
O.
Echt
,
D.
Kreisle
,
M.
Knapp
, and
E.
Recknagel
,
Chem. Phys. Lett.
108
,
401
(
1984
).
56.
I.
Harris
,
R.
Kidwell
, and
J.
Northby
,
Phys. Rev. Lett.
53
,
2390
(
1984
).
57.
H. Haberland, in Desorption Induced by Electronic Transitions (DIET) II, edited by D. Menzel and W. Brenig (Springer, Berlin, 1985).
58.
Photoionization mass spectra for potassium cluster beams were first reported, both by us and Knight et al., at the Workshop on Metal Clusters, Interlaken (October 1–3, 1984).
Knight’s group has very recently published their spectra:
W.
Knight
,
W.
de Heer
,
K.
Clemenger
, and
W.
Saunders
,
Solid State Commun.
53
,
445
(
1985
).
59.
It is interesting to note—in comparison to jellium calculations which do not consider core repulsion—that the best ab initio calculations on alkali dimers include a significant core correction term:
W.
Müller
and
W.
Meyer
,
J. Chem. Phys.
89
,
1500
(
1984
).
60.
R. P.
Feynman
,
Phys. Rev.
56
,
340
(
1939
).
61.
P. R. Bunker, Molecular Symmetry and Spectroscopy (Academic, New York, 1979).
62.
Geometric packing effects in clusters have been addressed in
J.
Burton
,
J. Chem. Phys.
52
,
345
(
1970
);
J.
Burton
,
56
,
3133
(
1972
).,
J. Chem. Phys.
63.
K.
Peterson
,
P.
Dao
,
R.
Farley
, and
A.
Castleman
, Jr.
,
J. Chem. Phys.
80
,
1780
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.