The action of light on undersaturated and supersaturated vapors of carbon disulfide has been investigated using a batch photochemical reactor and a thermal diffusion cloud chamber, respectively. Photoinduced nucleation was observed in each case. In the batch reactor enough sulfur was produced to nucleate and grow a sulfur aerosol. A model for the photoinduced nucleation of supersaturated carbon disulfide is proposed based upon the photochemical production and subsequent nucleation of sulfur. The model predictions compare well with observed nucleation delay time and nucleation rate data. A variation of the model utilizing diradical polymerization instead of nucleation is used to explain photoinduced nucleation results in the literature involving dilute solutions of carbon disulfide in supersaturated ethanol vapor.

1.
D. C.
Marvin
,
H.
Reiss
, and
R. H.
Heist
,
J. Colloid Interface Sci.
58
,
125
(
1977
).
2.
F. C.
Wen
,
T.
McLaughlin
, and
J. L.
Katz
,
Phys. Rev. A
26
,
2235
(
1982
).
3.
J. L.
Katz
,
T.
McLaughlin
, and
F. C.
Wen
,
J. Chem. Phys.
75
,
1459
(
1981
).
4.
J. L.
Katz
,
F. C.
Wen
,
T.
McLaughlin
, and
R. J.
Reusch
,
Science
196
,
1203
(
1977
).
5.
F. C.
Wen
,
T.
McLaughlin
, and
J. L.
Katz
,
Science
200
,
769
(
1978
).
6.
B.
Cordier
,
P.
Papan
, and
J.
Lebland
,
J. Chem. Phys.
74
,
3353
(
1981
).
7.
I. D.
Clark
and
J. F.
Noxon
,
Science
174
,
941
(
1971
).
8.
A. W.
Gertler
,
J. O.
Berg
, and
M. W.
El‐Sayed
,
Chem. Phys. Lett.
57
,
343
(
1978
).
9.
A. W.
Gertler
,
B.
Almeida
,
M. A.
El‐Sayed
, and
H.
Reiss
,
Chem. Phys.
42
,
429
(
1979
).
10.
H. Reiss, R. H. Heist, R. V. Casberg, and D. C. Marvin (unpublished results);
for details contact R. H. Heist.
11.
R.
McGraw
and
H.
Reiss
,
J. Colloid Interface Sci.
72
,
172
(
1979
).
12.
See, for example,
R. H.
Heist
and
H.
Reiss
,
J. Chem. Phys.
59
,
665
(
1973
)
or
J. L.
Katz
,
J. Chem. Phys.
52
,
4733
(
1970
).
13.
The authors gratefully acknowledge the assistance of Dr. Donald De‐Clerk of Pfaudler Company, Rochester, N.Y., in the glass coating of the chamber plates.
14.
This coating has been tested at Pfaudler for its resistance to acid attack and found to be roughly 30 times better than Pyrex.
15.
For information concerning the role of gaskets in generating impurities in the TDCC (see Ref. 11).
16.
J. Brito, MS Thesis, University of Rochester, 1981.
17.
A.
Kacker
and
R. H.
Heist
,
J. Chem. Phys.
82
,
2734
(
1985
).
18.
The delay would range from 10’s of seconds at the higher carbon disulfide pressures to 100’s of seconds at the lower pressures.
19.
W. A. Pryor, Mechanics of Sulfur Reactions (McGraw‐Hill, New York, 1962).
20.
Elemental Sulfur, edited by B. Meyer (Interscience, New York, 1965).
21.
Sulfur Research Trends, edited by R. F. Gould (American Chemical Society, Washington, D.C., 1972).
22.
Sulfurin Organic and Inorganic Chemistry, edited by A. Senning (Marcel Dekker, New York, 1972), Vols. 1–3.
23.
Topics in Sulfur Chemistry, edited by A. Senning (Georg Thieme, Stuttgart, 1977), Vols. 1–3.
24.
Inorganic Polymers, edited by F. G. A. Stone and F. Graham (Academic, New York, 1962), Chap. 3.
25.
Chapter 2 in Ref. 19.
26.
Chapter 4 in Ref. 21.
27.
Chapter 5 in Ref. 20.
28.
D. M.
Gardner
and
G. K.
Fraenkl
,
J. Am. Chem. Soc.
78
,
3279
(
1956
).
29.
A. V.
Tobolsky
and
A.
Eisenberg
,
J. Am. Chem. Soc.
81
,
780
(
1959
).
30.
J. Am. Chem. Soc.
82
,
289
(
1960
).
31.
A. G.
Pinkus
and
L. H.
Piette
,
J. Phys. Chem.
63
,
2086
(
1959
).
32.
Chapter 7 in Ref. 20.
33.
G.
Preuner
and
W.
Schupp
,
Z. Phys. Chem.
68
,
129
(
1909
);
H.
Braune
,
S.
Peter
, and
V.
Neveling
,
Z. Naturforsch. Teil A
6
,
32
(
1951
).
34.
P. D.
Bartlett
and
G.
Meguerian
,
J. Am. Chem. Soc.
78
,
3710
(
1956
).
35.
N. R.
Dhar
and
B. V. S.
Raghaven
,
Proc. Nat. Acad. Sci. India Sect. A
17
,
7
(
1948
);
N. R.
Dhar
and
B. V. S.
Raghaven
,
Chem. Abstracts
46
,
2948d
(
1952
).
36.
P. D.
Bartlett
,
A. K.
Calter
,
R. E.
Davis
, and
W. R.
Roderick
,
J. Am. Chem. Soc.
83
,
109
(
1961
).
37.
Chapter 3 in Ref. 19.
38.
T. E.
Ferington
and
A. V.
Tobalsky
,
J. Am. Chem. Soc.
80
,
3215
(
1958
).
39.
R. J.
Kern
,
J. Am. Chem. Soc.
77
,
1382
(
1955
).
40.
M. S.
Kharasch
,
W.
Nudenberg
, and
T. H.
Meltzer
,
J. Org. Chem.
18
,
1233
(
1953
).
41.
G.
Leandri
and
A.
Tundo
,
Ann. Chim. Rome
44
,
63
(
1954
);
Chem. Abstracts
49
,
4563d
(
1955
).
42.
T.
Otsu
,
J. Polymer Sci.
21
,
559
(
1956
).
43.
J.
Brito
and
R. H.
Heist
,
Chem. Eng. Commun.
15
,
133
(
1982
).
44.
R. H.
Heist
,
A.
Kacker
, and
J.
Brito
,
Chem. Eng. Commun.
28
,
117
(
1984
).
45.
R. H. Heist and O. Kalisky (unpublished results).
46.
W. A. Noyes and P. A. Leighton, Photochemistry of Gases (Dover, New York, 1941), Chap. IV.
47.
F. J.
Wright
,
J. Phys. Chem.
64
,
1648
(
1960
). See also Ref. 9 and 10 in Wright’s paper.
48.
R. J.
Richardson
,
H. T.
Powell
, and
J. D.
Kelley
,
J. Phys. Chem.
77
,
2601
(
1973
).
49.
M.
DeSorgo
,
A. J.
Yarwood
,
O. P.
Strausz
, and
H. E.
Gunning
,
Can. J. Chem.
43
,
1886
(
1965
).
50.
K.
Ernst
and
J. J.
Hoffman
,
Chem. Phys. Lett.
68
,
40
(
1979
).
51.
Chemistry and Physics of Carbon, edited by P. L. Walker (Marcel Dekker, New York, 1965), Vol. 1, pp. 267–283.
52.
L. E.
Brus
,
Chem. Phys. Lett.
12
,
116
(
1971
).
53.
C.
Lambert
and
G. H.
Kimbell
,
Can. J. Chem.
51
,
2601
(
1973
).
54.
J.
Heicklen
,
J. Am. Chem. Soc.
85
,
3562
(
1963
).
55.
G. H.
Myers
,
D. M.
Silver
, and
F.
Kaufman
,
J. Chem. Phys.
44
,
718
(
1966
).
56.
H.
Orita
,
H.
Morita
, and
S.
Magakura
,
Chem. Phys. Lett.
81
,
33
(
1981
).
57.
S. J. Silvers, M. R. McKeever, and G. K. Chawla, in Advances in Laser Chemistry, edited by A. H. Zewail (Springer, New York, 1978), p. 449.
58.
Typical values used in this calculation are: CS2 = 6.0×1018cm3;k = 1.3×109s;σ = 10−19cm2;I = 1.0×l014cm−2s−1;kr = 6.0×10−15cm3s−1. This value of kr was obtained from Ref. 54 above along with data from
W. P.
Wood
and
J.
Heicklen
,
J. Phys. Chem.
75
,
854
(
1971
). A second, qualitative estimate of kr is 6.0×10−12 and is based on observed rates of sulfur production in our cell experiments. Typical (approximate) aerosol particle number densities were 100 particles/cc in about one minute or so with radii of about one micron. Conditions are similar to those cited above. Our estimate of the particle size seems reasonable since the aerosol particles appeared larger than those in a smoke (roughly 0.1 μm) but not quite large enough to settle rapidly (roughly 10 μm).
59.
Reference 19, p. 10.
60.
Reference 23, Vol. 2, p. 55.
61.
J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, New York, 1966), pp. 490–491.
62.
Reference 23, Vol. 2, p. 56.
63.
Industrially distilled water was further distilled three more times. First from an alkaline permanganate bath followed by a second distillation. Finally, this water was distilled a third time under helium, and the vapor passed through a quartz tube, which was irradiated with UV light of the same wavelengths used in the experiment, into the TDCC for use in the PIN experiments. Interestingly, when the plain industrially distilled water was used for same experiments with no further purification, the results were the same.
This content is only available via PDF.
You do not currently have access to this content.