Local, i.e., multiplicative, operators satisfy well‐known linear factorization relations wherein matrix elements (between states associated with a complete set of wave functions) can be obtained as a linear combination of those out of the ground state (the input data). Analytic derivation of factorization relations for general state input data results in singular integral expressions for the coefficients, which can, however, be regularized using consistency conditions between matrix elements out of a single (nonground) state. Similar results hold for suitable ‘‘symmetry class’’ averaged matrix elements where the symmetry class projection operators are ‘‘complete.’’ In several cases where the wave functions or projection operators incorporate orthogonal polynomial dependence, we show that the ground state factorization relations have a simplified structure allowing an alternative derivation of the general factorization relations via an infinite matrix inversion procedure. This form is shown to have some advantages over previous versions. In addition, this matrix inversion procedure obtains all consistency conditions (which is not always the case from regularization of singular integrals).

1.
(a)
R.
Goldflam
,
S.
Green
, and
D. J.
Kouri
,
J. Chem. Phys.
67
,
4149
(
1977
);
(b)
R.
Goldflam
,
D. J.
Kouri
, and
S.
Green
,
J. Chem. Phys.
67
,
5661
(
1977
); ,
J. Chem. Phys.
(c)
V.
Khare
,
J. Chem. Phys.
68
,
4631
(
1978
); ,
J. Chem. Phys.
(d)
G. A.
Parker
and
R. T.
Pack
,
J. Chem. Phys.
68
,
1585
(
1978
); ,
J. Chem. Phys.
(e)
S.
Green
,
J. Chem. Phys.
70
,
816
(
1979
); ,
J. Chem. Phys.
(f) D. J. Kouri, in Atom‐Molecule Collision Theory: A Guide for the Experimentalist, edited by R. B. Bernstein (Plenum, New York, 1979).
2.
A. E.
DePristo
,
S. D.
Augustin
,
R.
Ramaswamy
, and
H.
Rabitz
,
J. Chem. Phys.
71
,
850
(
1979
).
3.
C.
Chan
,
J. W.
Evans
, and
D. K.
Hoffman
,
J. Chem. Phys.
75
,
722
(
1981
).
4.
D. K.
Hoffman
,
C.
Chan
, and
D. J.
Kouri
,
Chem. Phys.
42
,
1
(
1979
).
5.
C. K. Chan, Ph.D. thesis, Iowa State University, 1983.
6.
For example,
[See N. N. Lebedev, Special Functions and their Applications (Prentice‐Hall, Englewood Cliffs, NJ, 1965)].
7.
S.
Chapman
and
S.
Green
,
J. Chem. Phys.
67
,
2317
(
1977
).
8.
S.
Green
and
P.
Thaddeus
,
Astrophys. J.
205
,
766
(
1976
).
9.
B.
Chang
,
L.
Eno
, and
H.
Rabitz
,
J. Chem. Phys.
80
,
1201
(
1984
).
10.
E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic, New York, 1959).
11.
C. K.
Chan
,
D. K.
Hoffman
, and
J. W.
Evans
,
J. Chem. Phys.
82
,
1855
(
1985
).
12.
A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, Princeton, 1974). This reference includes the identity
from which ground state factorization matrix elements, for all the examples of Sec. III, readily follow.
13.
R.
Goldflam
and
D. J.
Kouri
,
J. Chem. Phys.
70
,
5076
(
1979
).
14.
G.
Zarur
and
H.
Rabitz
,
J. Chem. Phys.
60
,
2057
(
1974
).
15.
T. G.
Heil
,
S.
Green
, and
D. J.
Kouri
,
J. Chem. Phys.
68
,
2562
(
1978
).
16.
D. A.
Combe
and
R. F.
Snider
,
J. Chem. Phys.
72
,
2445
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.