We have simulated the photoelectron spectrum of CH2 using the model described previously [Sears and Bunker, J. Chem. Phys. 79, 5265 (1983)]. The optimization of the fit of the simulated spectrum to the recently observed spectrum of Lineberger and co‐workers [J. Chem. Phys. 81, 1048 (1984) and preceding paper] has enabled us to determine the rotation‐bending energy levels of triplet CH2 over an energy range of more than 1 eV. It has also enabled us to determine that the rotational temperature of the CH2 in the experiment is 220 K and that, for v2=1, the vibrational temperature is 680 K. For CH2 we determine that ae=103° and that ν2=1230 cm1. The singlet–triplet splitting in methylene is determined to be 3150±30 cm1 (0.3905±0.004 eV, 9.01±0.09 kcal/mol) from the photoelectron spectrum, in excellent agreement with the more accurate value previously obtained from LMR spectroscopy [McKellar etal., J. Chem. Phys. 79, 5251 (1983)] of 3165±20 cm1 (0.3924±0.0025 eV, 9.05±0.06 kcal/mol), and the electron affinity of triplet CH2 is determined to be 0.652±0.006 eV.

1.
G.
Herzberg
and
J.
Shoosmith
,
Nature
183
,
1801
(
1959
).
2.
G.
Herzberg
,
Proc. R. Soc. London Ser. A
262
,
291
(
1961
).
3.
G.
Herzberg
and
J. W. C.
Johns
,
Proc. R. Soc. London Ser. A
295
,
107
(
1966
).
4.
D.
Feldmann
,
K.
Meier
,
R.
Schmiedl
, and
K. H.
Welge
,
Chem. Phys. Lett.
60
,
30
(
1978
).
5.
H. Petek and C. B. Moore (private communication).
6.
E.
Wasserman
,
W. A.
Yager
, and
V. J.
Kuck
,
Chem. Phys. Lett.
7
,
409
(
1970
).
7.
R. A.
Bernheim
,
T.
Adl
,
H. W.
Bernard
,
A.
Songco
,
P. S.
Wang
,
R.
Wang
,
L. S.
Wood
, and
P. S.
Skell
,
J. Chem. Phys.
64
,
2747
(
1974
).
8.
(a)
C. F.
Bender
and
H. F.
Schaefer
III
,
J. Am. Chem. Soc.
92
,
4984
(
1970
);
(b)
D. R.
McLaughlin
,
C. F.
Bender
, and
H. F.
Schaefer
III
,
Theor. Chim. Acta
25
,
352
(
1972
).
9.
T. J.
Sears
,
P. R.
Bunker
, and
A. R. W.
McKellar
,
J. Chem. Phys.
75
,
4731
(
1981
).
10.
T. J.
Sears
,
P. R.
Bunker
, and
A. R. W.
McKellar
,
J. Chem. Phys.
77
,
5363
(
1982
).
11.
T. J.
Sears
,
P. R.
Bunker
,
A. R. W.
McKellar
,
K. M.
Evenson
,
D. A.
Jennings
, and
J. M.
Brown
,
J. Chem. Phys.
77
,
5348
(
1982
).
12.
P. R.
Bunker
and
P.
Jensen
,
J. Chem. Phys.
79
,
1224
(
1983
).
13.
I.
Shavitt
,
Tetrahedron
44
,
1531
(
1985
).
14.
P. F.
Zittel
,
G. B.
Ellison
,
S. V.
O’Neil
,
E.
Herbst
,
W. C.
Lineberger
, and
W. P.
Reinhardt
,
J. Am. Chem. Soc.
98
,
3731
(
1976
).
15.
P. C.
Engelking
,
R. R.
Corderman
,
J. J.
Wendoloski
,
G. B.
Ellison
,
S. V.
O’Neil
, and
W. C.
Lineberger
,
J. Chem. Phys.
74
,
5460
(
1981
).
16.
S.‐K.
Shih
,
S. D.
Peyerimhoff
,
R. J.
Buenker
, and
M.
Peric
,
Chem. Phys. Lett.
55
,
206
(
1978
).
17.
L. B.
Harding
and
W. A.
Goddard
III
,
Chem. Phys. Lett.
55
,
217
(
1978
).
18.
A. R. W.
McKellar
,
P. R.
Bunker
,
T. J.
Sears
,
K. M.
Evenson
,
R. J.
Saykally
, and
S. R.
Langhoff
,
J. Chem. Phys.
79
,
5251
(
1983
).
19.
T. J.
Sears
and
P. R.
Bunker
,
J. Chem. Phys.
79
,
5265
(
1983
).
20.
D. G.
Leopold
,
K. K.
Murray
, and
W. C.
Lineberger
,
J. Chem. Phys.
81
,
1048
(
1984
).
21.
D. G.
Leopold
,
K. K.
Murray
,
A. E. S.
Miller
, and
W. C.
Lineberger
,
J. Chem. Phys.
83
,
4849
(
1985
).
22.
P. R.
Bunker
and
B. M.
Landsberg
,
J. Mol. Spectrosc.
67
,
374
(
1977
).
23.
P. R.
Bunker
,
Annu. Rev. Phys. Chem.
34
,
59
(
1983
).
24.
A. R. W.
McKellar
,
C.
Yamada
, and
E.
Hirota
,
J. Chem. Phys.
79
,
1220
(
1982
).
25.
F. J.
Lovas
,
R. D.
Suenram
, and
K. M.
Evenson
,
Astrophys. J. Lett.
267
,
L131
(
1983
).
26.
M. N. R.
Ashfold
,
M. A.
Fullstone
,
G.
Hancock
, and
G.
Duxbury
,
Mol. Phys.
45
,
887
(
1982
).
27.
H.
Petek
,
D. J.
Nesbitt
,
P. R.
Ogilby
, and
C. B.
Moore
,
J. Phys. Chem.
87
,
5367
(
1983
).
28.
P. R.
Bunker
and
S. R.
Langhoff
,
J. Mol. Spectrosc.
102
,
204
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.