We have shown how the Variational Principle can be used to optimize the choice of the expansion functional and the reference state potential in molecular perturbation theory. The method was applied to a Stockmayer and to a Lennard‐Jones diatomic fluid. For the Stockmayer fluid, the variationally optimized expansion was identical to the Gray–Gubbins–Stell expansion that is based on choosing the potential as the expansion functional, and the unweighted mean of the full pair potentials as the reference state potential. For the Lennard‐Jones diatomic fluid, the variationally optimized expansion functional and reference state potential were intermediate between those of the Gray–Gubbins–Stell theory, and those of the reference average Mayer function (RAM) theory.

1.
W. R.
Smith
,
Can. J. Phys.
52
,
2022
(
1974
).
2.
W. R.
Smith
and
I.
Nezbeda
,
Faraday Discuss. Chem. Soc.
66
,
130
(
1978
).
3.
W. R. Smith and I. Nezbeda, in Molecular‐Based Study of Fluids, edited by J. M. Haile and G. A. Mansoori (American Chemical Society, Washington D.C., 1983), p. 235.
4.
I.
Nezbeda
,
W. R.
Smith
, and
S.
Labik
,
J. Chem. Phys.
79
,
6242
(
1983
).
5.
W. R.
Smith
,
I.
Nezbeda
, and
S.
Labik
,
J. Chem. Phys.
80
,
5219
(
1984
).
6.
I.
Nezbeda
,
W. R.
Smith
, and
S.
Labik
,
J. Chem. Phys.
81
,
935
(
1984
).
7.
J. A.
Pople
,
Proc. R. Soc. London Ser. A
221
,
508
(
1954
).
8.
M. S.
Ananth
,
K. E.
Gubbins
, and
C. G.
Gray
,
Mol. Phys.
28
,
1005
(
1974
).
9.
G.
Stell
,
J. C.
Rasaiah
, and
H.
Narang
,
Mol. Phys.
27
,
1393
(
1974
).
10.
M.
Flytzani‐Stephanopoulos
,
K. E.
Gubbins
, and
C. G.
Gray
,
Mol. Phys.
30
,
1649
(
1975
).
11.
C. H.
Twu
,
K. E.
Gubbins
, and
C. G.
Gray
,
J. Chem. Phys.
64
,
5186
(
1976
).
12.
C. G.
Gray
,
K. E.
Gubbins
, and
C. H.
Twu
,
J. Chem. Phys.
69
,
182
(
1978
).
13.
J. C. G.
Calado
,
C. G.
Gray
,
K. E.
Gubbins
,
A. M. F.
Palavra
,
V. A. M.
Soares
,
L. A. K.
Staveley
, and
C. H.
Twu
,
J. Chem. Soc. Faraday Trans. 1
74
,
893
(
1978
).
14.
P.
Clancy
,
K. E.
Gubbins
, and
C. G.
Gray
,
Faraday Discuss. Chem. Soc.
66
,
116
(
1978
).
15.
S.
Murad
,
K. E.
Gubbins
, and
C. G.
Gray
,
Chem. Phys. Lett.
65
,
187
(
1979
).
16.
M. S.
Shaw
,
G. D.
Johnson
, and
B. L.
Holian
,
Phys. Rev. Lett.
50
,
1141
(
1983
).
17.
J. L.
Lebowitz
and
J. K.
Percus
,
J. Chem. Phys.
79
,
443
(
1983
).
18.
J. P. Hansen and I. R. McDonald, Theory of Liquids (Academic, London, 1976), p. 148.
19.
G. A.
Mansoori
and
F. B.
Canfield
,
J. Chem. Phys.
51
,
4958
(
1969
).
20.
G. A.
Mansoori
and
T. W.
Leland
, Jr.
,
J. Chem. Phys.
53
,
1931
(
1970
).
21.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
, Jr.
,
J. Chem. Phys.
54
,
1523
(
1971
).
22.
S.
Goldman
,
J. Solution Chem.
6
,
461
(
1977
).
23.
S.
Singh
,
J.
Ram
, and
S.
Goldman
,
J. Chem. Phys.
80
,
3748
(
1984
).
24.
L.
Verlet
and
J. J.
Weis
,
Mol. Phys.
28
,
665
(
1974
).
25.
G.
Jacucci
and
N.
Quirke
,
Mol. Phys.
40
,
1005
(
1980
).
26.
N.
Quirke
and
G.
Jacucci
,
Mol. Phys.
45
,
823
(
1982
).
27.
F. Kohler and N. Quirke, in Molecular‐Based Study of Fluids, edited by J. M. Haile and G. A. Mansoori (American Chemical Society, Washington D.C., 1983), p. 209.
28.
W. H.
Stockmayer
,
J. Chem. Phys.
9
,
398
(
1941
).
29.
W. R.
Smith
,
Chem. Phys. Lett.
40
,
313
(
1976
).
30.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
31.
L.
Verlet
and
J. J.
Weis
,
Phys. Rev.
5
,
939
(
1972
).
32.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
33.
J. W.
Perram
,
Mol. Phys.
30
,
1505
(
1975
).
34.
J. D.
Downs
,
K. E.
Gubbins
,
S.
Murad
, and
C. G.
Gray
,
Mol. Phys.
37
,
129
(
1979
).
35.
C. G.
Gray
and
C. J.
Joslin
,
Chem. Phys. Lett.
101
,
248
(
1983
).
36.
H. C.
Andersen
,
J. D.
Weeks
, and
D.
Chandler
,
Phys. Rev.
4
,
1597
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.