Models where pairs, triples, or larger (typically connected) sets of sites on a 2D lattice ‘‘fill’’ irreversibly (described here as dimer, trimer, ... filling or adsorption), either randomly or cooperatively, are required to describe many surface adsorption and reaction processes. Since filling is assumed to be irreversible and immobile (species are ‘‘frozen’’ once adsorbed), even the stationary, saturation state, which is nontrivial since the lattice cannot fill completely, is not in equilibrium. The kinetics and statistics of these processes are naturally described by recasting the master equations in hierarchic form for probabilities of subconfigurations of empty sites. These hierarchies are infinite for the infinite lattices considered here, but approximate solutions can be obtained by implementing truncation procedures. Those used here exploit a shielding property of suitable walls of empty sites peculiar to irreversible filling processes. Accurate results, including saturation coverage estimates, are presented for random filling of dimers, and trimers of different shapes, on various infinite 2D lattices, and for square tetramers on an infinite square lattice.

1.
E. R.
Cohen
and
H.
Reiss
,
J. Chem. Phys.
38
,
680
(
1963
);
T. H. K.
Barron
and
E. A.
Boucher
,
Trans. Faraday Soc.
65
,
3301
(
1969
).
2.
E. A.
Boucher
,
J. Chem. Phys.
59
,
3848
(
1973
).
3.
E. A.
Boucher
,
Chem. Phys. Lett.
17
,
221
(
1972
);
E. A.
Boucher
,
Faraday Trans. 2
69
,
1839
(
1973
);
J. J.
Gonzalez
,
P. C.
Hemmer
, and
J. S.
Ho/ye
,
Chem. Phys.
3
,
228
(
1974
);
I. R.
Epstein
,
Biopolymers
18
,
765
(
1979
).
4.
N. O.
Wolf
,
J. W.
Evans
, and
D. K.
Hoffman
,
J. Math. Phys.
25
,
2519
(
1984
).
5.
K. J.
Vette
,
T. W.
Orent
,
D. K.
Hoffman
, and
R. S.
Hansen
,
J. Chem. Phys.
60
,
4854
(
1974
).
6.
J. W.
Evans
,
D. R.
Burgess
, and
D. K.
Hoffman
,
J. Chem. Phys.
79
,
5011
(
1983
).
7.
D. K.
Hoffman
,
J. Chem. Phys.
65
,
95
(
1976
).
8.
J. W.
Evans
,
Physica A
123
,
297
(
1984
).
9.
N. A.
Platé
and
O. V.
Noah
,
Adv. Polym. Sci.
31
,
133
(
1979
);
E. A.
Boucher
,
Prog. Polym. Sci.
6
,
63
(
1978
).
10.
P. J.
Flory
,
J. Am. Chem. Soc.
61
,
1518
(
1939
).
11.
J. K.
Roberts
,
Nature
135
,
1037
(
1935
);
Proc. Cambridge Philos. Soc.
34
,
399
(
1938
).
12.
(a)
J. K.
Roberts
,
Proc. R. Soc. London Ser. A
152
,
473
(
1935
);
J. K.
Roberts
,
J. K.
Roberts
,
161
,
141
(
1937
); ,
Proc. R. Soc. London, Ser. A
(b)
D. R.
Rossington
and
R.
Borst
,
J. Chem. Phys.
3
,
202
(
1965
);
(c)
W. D.
Dong
,
J. Chem. Phys.
42
,
609
(
1974
).,
J. Chem. Phys.
13.
P. T.
Dawson
and
Y. K.
Peng
,
Surf. Sci.
33
,
565
(
1972
).
14.
J. B.
Peri
,
J. Chem. Phys.
69
,
220
(
1965
).
15.
E. L. Fuller, S. Ebey, and V. R. R. Uppuluri, Preliminary Report, ORNL‐5231, Oak Ridge National Laboratory (1976);
E. L. Fuller and P. A. Agron, Oak Ridge National Laboratory Report 5129 (1976).
16.
E.
Hayden
and
D. F.
Klemperer
,
Surf. Sci.
80
,
401
(
1979
), and references therein.
17.
R.
Gomer
,
Faraday Discuss. Chem. Soc.
28
,
540
(
1959
);
R.
Gomer
,
Solid State Phys.
30
,
94
(
1975
).
18.
A.
Maltz
and
E.
Mola
,
Surf. Sci.
115
,
599
(
1982
);
A.
Maltz
and
E.
Mola
,
J. Chem. Phys.
79
,
5141
(
1983
).
19.
T. E.
Madey
and
J. T.
Yates
,
Surf. Sci.
76
,
397
(
1978
);
F. M.
Hoffmann
,
T. E.
Felter
,
P. A.
Thiel
, and
W. H.
Weinberg
,
Surf. Sci.
130
,
163
,
173
(
1983
); ,
Surf. Sci.
P. D.
Szuromi
,
J. R.
Eystrom
, and
W. H.
Weinberg
,
J. Chem. Phys.
80
,
508
(
1984
).
20.
E. S.
Page
,
J. R. Stat. Soc. B
21
,
364
(
1959
);
F.
Downton
,
J. R. Stat. Soc. B
23
,
207
(
1961
);
R. B.
McQuistan
and
D.
Lichtman
,
J. Math. Phys.
9
,
1680
(
1968
);
T. H. K.
Barron
,
R. J.
Bawden
, and
E. A.
Boucher
,
J. Chem. Soc.
70
,
651
(
1979
).
21.
N. O. Wolf, Ph.D. thesis, Iowa State University, 1979.
22.
J. W.
Evans
,
D. R.
Burgess
, and
D. K.
Hoffman
,
J. Math. Phys.
25
,
3051
(
1984
).
23.
J. K.
Mackenzie
,
J. Chem. Phys.
37
,
723
(
1962
);
E. A.
Boucher
,
Chem. Phys. Lett.
17
,
221
(
1972
).
24.
J. W.
Evans
,
J. Math. Phys.
25
,
2527
(
1984
).
25.
R. B.
McQuistan
,
D.
Lichtman
, and
L. P.
Levine
,
Surf. Sci.
20
,
401
(
1970
).
26.
B. E.
Blaisdell
and
H.
Solomon
,
J. Appl. Probab.
7
,
667
(
1970
);
H.
Solomon
, in
Proc. Fifth Berkeley Symp. on Math. Stat, and Probab.
3
,
119
(
1967
),
University of California Press: The N→∞ limit of the generalized Palasti conjecture recovers the Palasti conjecture that the saturation coverage for random filling of the plane with nonoverlapping, identical squares (of some fixed orientation) equals the square of the saturation coverage for the car parking problem (random filling of the infinite line with nonoverlapping equal‐length intervals).
27.
J. W.
Evans
and
R. S.
Nord
,
J. Stat. Phys.
38
,
681
(
1985
).
28.
J. W.
Evans
and
R. S.
Nord
,
Phys. Rev. B
31
,
1759
(
1985
).
29.
J. W.
Evans
,
D. K.
Hoffman
, and
D. R.
Burgess
,
J. Chem. Phys.
80
,
936
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.