In the energy sudden (ES) approximation for nonreactive molecular collisions, there exist factorization relations by which an arbitrary T‐matrix element can be predicted as a spectroscopic linear combination of those out of some other, input state. These were first discovered for ground state input but this restriction was later removed. This general form of the spectroscopic factorization relations is straightforwardly extended here to ES dissociative collisions. One finds that in predicting dissociation amplitudes out of some state, it is necessary to use input data out of a higher (energy) bound state. Thus ground state factorization relations cannot be used. The structure of two natural forms of the factorization relation coefficients (equivalent by virtue of ES consistency conditions among T‐matrix elements out of a single state) are analyzed in detail for a collinear atom‐truncated square‐well diatomic oscillator system. Relevance of these results to the prediction of (dissociative) state specific vibrational enhancement/inhibition is discussed.

1.
D. J. Diestler, in Atom‐Molecule Collision Theory: A Guide to the Experimentalist, edited by R. B. Bernstein (Plenum, New York, 1979).
2.
P. J. Kuntz, in Ref. 1.
3.
L. W.
Ford
,
D. J.
Diestler
, and
A. F.
Wagner
,
J. Chem. Phys.
63
,
2019
(
1975
).
4.
J. C.
Gray
,
G. A.
Fraser
, and
D. G.
Truhlar
,
Chem. Phys. Lett.
68
,
359
(
1979
);
J. A.
Kaye
and
A.
Kuppermann
,
Chem. Phys. Lett.
78
,
546
(
1981
); ,
Chem. Phys. Lett.
I.
Rusinek
and
R. E.
Roberts
,
J. Chem. Phys.
65
,
872
(
1976
);
W. G.
Valance
and
J.
Lin
,
Physica
52
,
620
(
1971
),
J.
Lin
,
Physica
62
,
369
(
1972
); ,
Physica (Amsterdam)
E. O.
Siré
,
G. H.
Kohlmaier
, and
E.
Novak
,
J. Phys. B
11
,
3165
(
1978
).
5.
R. G. Newton, Scattering Theory of Waves and Particles (Springer, New York, 1982).
6.
L. H.
Beard
,
D. J.
Kouri
, and
D. K.
Hoffman
,
J. Chem. Phys.
76
,
3623
(
1982
).
7.
D. J. Kouri, in Ref. 1.
8.
C.
Chan
,
J. W.
Evans
, and
D. K.
Hoffman
,
J. Chem. Phys.
75
,
722
(
1981
).
9.
B.
Chang
,
L.
Eno
, and
H.
Rabitz
,
J. Chem. Phys.
80
,
1201
(
1984
).
10.
A. Messiah, Quantum Mechanics (Wiley, New York, 1968), Vol. 1.
11.
A. E.
DePristo
,
S. D.
Augustin
,
R.
Ramaswamy
, and
H.
Rabitz
,
J. Chem. Phys.
71
,
850
(
1979
). Expressions are given here for the collinear atom‐Morse oscillator ES factorization coefficients predicting bound (vibrational)‐state to bound‐state transition amplitudes from ground state input. The divergent integrals which must occur for sufficiently high bound‐state labels (cf. Sec. II) are “represented” here by gamma functions with negative nonintegral arguments (since 0dllz−1e−1 = Γ(z) was used for z<0).
12.
C. K. Chan, Ph.D. thesis, Iowa State University (1983).
13.
M. K.
Srivastava
and
D. W. L.
Sprung
,
Adv. Nucl. Phys.
8
,
121
(
1975
) and references therein; for an off‐shell wave number of sufficiently high amplitude, one can use a Riemann‐Lebesque argument to show that 〈φ|Vint±, which defines the T‐matrix element, must approach zero.
14.
D. K.
Hoffman
,
C.
Chan
, and
D. J.
Kouri
,
Chem. Phys.
42
,
1
(
1979
).
This content is only available via PDF.
You do not currently have access to this content.