The generalized Langevin equation is solved numerically by replacing the driving forces by stochastic, Gaussian distributed forces with a Gaussian time correlation. The calculated Brownian trajectories are compared with the corresponding classical mechanical and Monte Carlo trajectories and found to exhibit fractal properties with a dimension equal to two, for time intervals where the stochastic forces are uncorrelated. The classical mechanical trajectories have a lower fractal dimension, whereas the Markovian Monte Carlo trajectories show a fractal dimension equal to 2 even for high resolutions. The result indicates that the long‐time memory plays a crucial role for the fractal dimensionality.

1.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
2.
D. L.
Ermak
and
H.
Buckholz
,
J. Comput. Phys.
35
,
169
(
1980
).
3.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
,
Mol. Phys.
45
,
637
(
1982
).
4.
R. Zwanzig, Lectures in Theoretical Physics, edited by W. E. Britton, B. W. Downs, and J. Downs (Interscience, New York, 1961), Vol. 3, 106.
5.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
);
H.
Mori
,
34
,
399
(
1965
).,
Prog. Theor. Phys.
6.
P.
Turq
and
F.
Lantelme
,
J. Chem. Phys.
66
,
3039
(
1977
).
7.
G.
Ciccotti
and
J. P.
Ryckaert
,
Mol. Phys.
40
,
141
(
1980
);
G.
Ciccotti
and
J. P.
Ryckaert
,
46
,
875
(
1982
).,
Mol. Phys.
8.
F. J.
Vesely
,
Mol. Phys.
53
,
505
(
1984
).
9.
S.
Toxvaerd
,
J. Chem. Phys.
81
,
5131
(
1984
).
10.
M. C.
Wang
and
G. E.
Uhlenbeck
,
Rev. Mod. Phys.
17
,
323
(
1945
).
11.
M.
Berkowitz
,
J. D.
Morgan
, and
J. A.
McCammon
,
J. Chem. Phys.
78
,
3256
(
1983
).
12.
See, e.g.,
L. L.
Lee
and
T. H.
Chung
,
J. Chem. Phys.
77
,
4650
(
1982
).
13.
D.
Levesque
and
L.
Verlet
,
Phys. Rev. A
2
,
2514
(
1970
).
14.
B. J.
Alder
and
T. E.
Wainwright
,
Phys. Rev. A
1
,
18
(
1970
).
15.
B. J.
Berne
,
J. P.
Boon
, and
S. A.
Rice
,
J. Chem. Phys.
45
,
1086
(
1966
).
16.
B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983).
17.
J. G.
Powles
and
N.
Quirke
,
Phys. Rev. Lett.
52
,
1571
(
1984
).
18.
S. Toxvaerd, Phys. Rev. Lett. (submitted).
19.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
);
see also, K. Binder, Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979).
20.
Thus, the symbol ε in this article is used both for divider length [Eq. (18)] and for energy [Eq. (19)].
21.
S.
Toxvaerd
,
J. Comput. Phys.
47
,
444
(
1982
);
S.
Toxvaerd
,
52
,
214
(
1983
).,
J. Comput. Phys.
22.
D. C.
Rapaport
,
Phys. Rev. Lett.
53
,
1965
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.