In this paper we describe a general method for the numerical solution of the full hypernetted‐chain (HNC) theory for fluids characterized by angle‐dependent pair potentials. This method is also applicable to the closely related reference hypernetted‐chain (RHNC) approximation. The only formal restriction is that the pair potential and correlation functions must be expandable in a basis set of rotational invariants. We present explicit numerical solutions of the RHNC theory for dense dipolar hard sphere fluids and detailed comparisons are made with previous theories and computer simulation results. It is found that the full RHNC theory generally improves upon the previous reference linearized and quadratic HNC approximations. The values given by the RHNC theory for the static dielectric constants are smaller than those given by these earlier approximations and are in much better agreement with computer simulations.

1.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 1976).
2.
G. N.
Patey
,
Mol. Phys.
34
,
427
(
1977
).
3.
G.
Stell
,
G. N.
Patey
, and
J. S.
Ho/ye
,
Adv. Chem. Phys.
38
,
183
(
1981
).
4.
G. N.
Patey
,
Mol. Phys.
35
,
1413
(
1978
).
5.
D. Y. C.
Chan
and
G. R.
Walker
,
Mol. Phys.
47
,
881
(
1982
).
6.
G. N.
Patey
,
D.
Levesque
, and
J. J.
Weis
,
Mol. Phys.
38
,
1635
(
1979
).
7.
G. N.
Patey
,
D.
Levesdque
, and
J. J.
Weis
,
Mol. Phys.
38
,
219
(
1979
).
8.
D.
Levesque
,
J. J.
Weis
, and
G. N.
Patey
,
Phys. Lett. A
66
,
115
(
1978
);
D.
Levesque
,
J. J.
Weis
, and
G. N.
Patey
,
J. Chem. Phys.
72
,
1887
(
1980
).
9.
E. L.
Pollock
and
B. J.
Alder
,
Physica A
102
,
1
(
1980
).
10.
G. N.
Patey
,
D.
Levesque
, and
J. J.
Weis
,
Mol. Phys.
45
,
733
(
1982
).
11.
F. Tam, M.Sc. thesis, University of British Columbia, 1982.
12.
F.
Lado
,
Phys. Rev. A
135
,
1013
(
1964
);
Mol. Phys.
31
,
1117
(
1976
).
13.
B.
Larson
,
J. Chem. Phys.
68
,
4511
(
1978
).
14.
(a)
L.
Blum
and
A. J.
Torruella
,
J. Chem. Phys.
56
,
303
(
1972
);
(b) For earlier use of rotational invariant expansions see
C. G.
Gray
and
J.
van Kranendonk
,
Can. J. Phys.
44
,
2411
(
1966
);
C. G.
Gray
,
Can. J. Phys.
46
,
135
(
1968
); ,
Can. J. Phys.
R. L.
Armstrong
et al.,
Can. J. Phys.
46
,
1331
(
1968
).,
Can. J. Phys.
15.
(a)
L.
Blum
,
J. Chem. Phys.
57
,
1862
(
1972
);
(b)
L.
Blum
,
58
,
3295
(
1973
).,
J. Chem. Phys.
16.
A. Messiah, Quantum Mechanics (Wiley, New York, 1962), Vol. II.
17.
(a)
H. A.
Buckmaster
,
Can. J. Phys.
42
,
386
(
1964
);
(b)
H. A.
Buckmaster
,
44
,
2525
(
1966
); ,
Can. J. Phys.
(c)
H. A.
Buckmaster
,
R.
Chatterjee
, and
Y. H.
Shing
,
Phys. Status Solidi A
13
,
9
(
1972
).
18.
A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, Princeton, 1957).
19.
B. L. Silver, Irreducible Tensor Methods: An Introduction for Chemists (Academic, New York, 1976).
20.
Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1970).
21.
M. S.
Werthrim
,
J. Chem. Phys.
55
,
4291
(
1971
).
22.
M.
Neumann
and
O.
Steinhauser
,
Mol. Phys.
39
,
437
(
1980
).
23.
L.
Verlet
and
J. J.
Weis
,
Phys. Rev. A
5
,
939
(
1972
).
24.
D.
Levesque
,
G. N.
Patey
, and
J. J.
Weis
,
Mol. Phys.
34
,
1077
(
1977
).
25.
M.
Neumann
and
O.
Steinhauser
,
Chem. Phys. Lett.
95
,
417
(
1983
).
26.
D. J.
Adams
,
Mol. Phys.
40
,
1261
(
1980
).
27.
M.
Neumann
,
Mol. Phys.
50
,
841
(
1983
).
28.
G.
Stell
and
J. J.
Weis
,
Phys. Rev. A
16
,
757
(
1977
).
29.
A.
Tani
,
D.
Henderson
,
J. A.
Barker
, and
C. E.
Hecht
,
Mol. Phys.
48
,
863
(
1983
).
30.
D. J.
Adams
and
E. M.
Adams
,
Mol. Phys.
42
,
907
(
1981
).
31.
(a) C. Gray and K. Gubbins, Theory of Molecular Fluids (Oxford, London, 1984), Vol. 1, Appendix A;
(b)
P. T.
Cummings
et al.,
Mol. Phys.
48
,
1177
(
1983
);
P. T.
Cummings
,
50
,
1133
(
1983
).,
Mol. Phys.
This content is only available via PDF.
You do not currently have access to this content.