A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP’s are derived from all‐electron numerical Hartree–Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP’s are generated from the relativistic Hartree–Fock atomic wave functions of Cowan which incorporate the Darwin and mass–velocity terms. Energy‐optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP’s. Comparisons between all‐electron and valence‐electron ECP calculations are presented for NaF, NaCl, Cl2, Cl2, Br2, Br2, and Xe2+. The results show that the average errors introduced by the ECP’s are generally only a few percent.

1.
L. R.
Kahn
,
P.
Baybutt
, and
D. G.
Truhlar
,
J. Chem. Phys.
65
,
3826
(
1976
).
2.
G. B.
Bachelet
,
D. R.
Hamann
, and
M.
Schluter
,
Phys. Rev. B
26
,
4199
(
1982
).
3.
L. R.
Kahn
and
W. A.
Goddaid
III
,
J. Chem. Phys.
56
,
2685
(
1972
);
C. F.
Melius
and
W. A.
Goddard
III
,
Phys. Rev. A
10
,
1528
(
1974
).
4.
Y. S.
Lee
,
W. C.
Ermler
, and
K. S.
Pitzer
,
J. Chem. Phys.
67
,
5861
(
1977
).
5.
L. R.
Kahn
,
P. J.
Hay
, and
R. D.
Cowan
,
J. Chem. Phys.
68
,
2386
(
1978
).
6.
H.
Basch
and
S.
Topiol
,
J. Chem. Phys.
71
,
802
(
1979
).
7.
P. J.
Hay
,
W. R.
Wadt
, and
L. R.
Kahn
,
J. Chem. Phys.
68
,
3059
(
1978
).
8.
P. A.
Christiansen
,
Y. S.
Lee
, and
K. S.
Pitzer
,
J. Chem. Phys.
71
,
4445
(
1979
).
9.
A.
Rappe
,
T.
Smedley
, and
W. A.
Goddard
III
,
J. Phys. Chem.
85
,
1662
(
1981
).
10.
R. D.
Cowan
and
D. C.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
(
1976
).
11.
W. C.
Ermler
,
Y. S.
Lee
,
P. A.
Christiansen
, and
K. S.
Pitzer
,
Chem. Phys. Lett.
81
,
70
(
1981
).
12.
W. J.
Stevens
and
M.
Krauss
,
Chem. Phys. Lett.
86
,
320
(
1982
);
W. J.
Stevens
and
M.
Krauss
,
J. Chem. Phys.
76
,
3834
(
1982
).
13.
J. S.
Cohen
,
W. R.
Wadt
, and
P. J.
Hay
,
J. Chem. Phys.
71
,
2955
(
1979
).
14.
P. J.
Hay
,
W. R.
Wadt
,
L. R.
Kahn
,
R. C.
Raffenetti
, and
D. C.
Phillips
,
J. Chem. Phys.
71
,
1767
(
1979
);
W. R.
Wadt
and
P. J.
Hay
,
J. Am. Chem. Soc.
101
,
5198
(
1979
);
W. R.
Wadt
,
J. Am. Chem. Soc.
103
,
6050
(
1981
).,
J. Am. Chem. Soc.
15.
W. R.
Wadt
,
Chem. Phys. Lett.
89
,
245
(
1982
).
16.
Y. S.
Lee
,
W. C.
Ermler
, and
K. S.
Pitzer
,
J. Chem. Phys.
73
,
360
(
1980
).
17.
P. J.
Hay
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
64
,
5077
(
1976
).
18.
T. H. Dunning, Jr. and P. J. Hay, in Methods of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. III, Chap. 1.
19.
W. R.
Wadt
,
P. J.
Hay
, and
L. R.
Kahn
,
J. Chem. Phys.
68
,
1752
(
1978
).
20.
W. C.
Ermler
,
Y. S.
Lee
,
K. S.
Pitzer
, and
N. W.
Winter
,
J. Chem. Phys.
69
,
976
(
1981
).
21.
P. A.
Christiansen
,
K. S.
Pitzer
,
Y. S.
Lee
,
J. H.
Yates
,
W. C.
Ermler
, and
N. W.
Winter
,
J. Chem. Phys.
75
,
5410
(
1981
).
22.
W. R.
Wadt
,
J. Chem. Phys.
68
,
402
(
1978
).
23.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
66
,
1382
(
1977
).
24.
P. J.
Hay
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
69
,
2209
(
1978
).
25.
W. J.
Hunt
,
P. J.
Hay
, and
W. A.
Goddard
III
,
J. Chem. Phys.
57
,
738
(
1972
).
26.
Ch.
Teichteil
,
J. P.
Malrieu
, and
J. C.
Barthelat
,
Mol. Phys.
33
,
181
(
1977
).
27.
J. C.
Barthelat
,
Ph.
Durand
, and
A.
Serafini
,
Mol. Phys.
33
,
159
(
1977
);
J. C.
Barthelat
and
Ph.
Durand
,
Gazz. Chim. Ital.
108
,
225
(
1978
);
M.
Pelissier
and
Ph.
Durand
,
Theor. Chim. Acta
55
,
43
(
1980
).
28.
V.
Bonifacic
and
S.
Huzinaga
,
J. Chem. Phys.
60
,
2779
(
1974
);
V.
Bonifacic
and
S.
Huzinaga
,
62
,
1507
(
1975
); ,
J. Chem. Phys.
V.
Bonifacic
and
S.
Huzinaga
,
64
,
956
(
1976
).,
J. Chem. Phys.
29.
Y.
Sakai
and
S.
Huzinaga
,
J. Chem. Phys.
76
,
2537
(
1982
).
30.
O.
Gropen
,
S.
Huzinaga
, and
A. D.
McLean
,
J. Chem. Phys.
73
,
402
(
1980
).
31.
Y.
Sakai
and
S.
Huzinaga
,
J. Chem. Phys.
76
,
2552
(
1982
).
32.
R. C.
Raffenetti
,
J. Chem. Phys.
58
,
4452
(
1973
).
33.
S. Huzinaga, Approximate atomic wave functions. II, Department of Chemistry Report, University of Alberta, Edmonton, Alberta, 1971.
34.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
35.
W.
Muller
and
W.
Meyer
,
J. Chem. Phys.
80
,
3311
(
1984
).
36.
W.
Muller
,
J.
Flesch
, and
W.
Meyer
,
J. Chem. Phys.
80
,
3297
(
1984
).
37.
G. H.
Jeung
,
J. P.
Malrieu
, and
J. P.
Daudey
,
J. Chem. Phys.
77
,
3571
(
1982
).
38.
B.
Laskowski
and
J. R.
Stallcop
,
J. Chem. Phys.
74
,
4883
(
1981
).
39.
W. J.
Stevens
,
A. M.
Karo
, and
J. R.
Hiskes
,
J. Chem. Phys.
74
,
3989
(
1981
).
40.
D. D.
Konowalow
,
M. E.
Rosenkrantz
,
W. J.
Stevens
, and
M.
Krauss
,
Chem. Phys. Lett.
64
,
317
(
1979
);
M. E.
Rosenkrantz
,
W. J.
Stevens
,
M.
Krauss
, and
D. D.
Konowalow
,
J. Chem. Phys.
72
,
2525
(
1980
).
41.
W. R.
Wadt
,
Appl. Phys. Lett.
34
,
658
(
1979
).
42.
N.
Honjou
,
G. F.
Adams
, and
D. R.
Yarkony
,
J. Chem. Phys.
79
,
4376
(
1983
).
43.
P.
Hafner
and
W. H. E.
Schwarz
,
J. Phys. B
11
,
2975
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.