The higher second‐harmonic efficiency, in powder, of a new organic molecular crystal N‐(4‐nitrophenyl)‐(L)‐prolinol (NPP) is reported. Electronic polarizability of NPP molecules relates to that of other para‐nitroaniline‐like structures such as that of previously reported N‐(2,4‐dinitrophenyl) methyl alaninate (MAP), and the increase in crystalline nonlinear efficiency by one order of magnitude above the latter is ascribed to an ‘‘optimized’’ crystalline structure rather than to minor changes of the molecular hyperpolarizability. The simultaneous chiral and hydrogen‐bonding character of the prolinol electron‐donating group leads to a quasioptimal angle, with respect to quadratic phase‐matched nonlinear interactions, between the molecular transition dipole moments and the twofold axis of the monoclinic P21 crystal structure. Based on a simple oriented gas description of the quasiplanar structure of the crystal, two possible mutually exclusive second‐harmonic phase‐matched configurations are evidenced and shown to promote the optimized nonlinear tensor coefficient.

1.
Nonlinear Optical Properties of Organic and Polymeric Materials, edited by D. J. Williams, (ACS Symp. Ser. 233, Washington D.C. 1983).
2.
J.
Zyss
,
J. Non‐Cryst. Solids
47
,
211
(
1982
).
3.
J.
Zyss
,
D. S.
Chemla
, and
J. F.
Nicoud
,
J. Chem. Phys.
74
,
4800
(
1981
).
4.
J. L.
Oudar
and
R.
Hierle
,
J. Appl. Phys.
48
,
2699
(
1977
).
5.
K.
Jain
,
J. I.
Crowley
,
G. H.
Hewig
,
Y. Y.
Cheng
, and
R. J.
Tweig
,
Opt. Laser Technol.
13
,
297
(
1981
).
6.
R.
Tweig
,
A.
Azema
,
K.
Jain
, and
Y. Y.
Cheng
,
Chem. Phys. Lett.
82
,
208
(
1982
).
7.
A. F.
Garito
and
K. D.
Singer
,
Laser Focus
59
(
1982
).
8.
N. Bloembergen, Non Linear Optics (Benjamin, New York, 1965).
9.
H. Rabin and C. L. Tang, Quantum Electronics (Academic, New York, 1965).
10.
A. I. Kitaigorodskii, Organic Chemical Crystallography (Consultant Bureau, New York, 1961).
11.
J. N. Murrel, in Orbital Theories of Molecules and Solids (edited by N. H. March, Clarendon, Oxford 1974);
The occurence of noticeable collective effects such as excitonic splitting, brought about by the periodic structure of the crystal can be neglected in on optical studies undertaken within the transparency range of the medium. Such is the case here where an “oriented gas” model may be applied satisfactorily.
12.
A.
Schweig
,
Chem. Phys. Lett.
1
,
163
,
195
(
1967
).
13.
F. N. H.
Robinson
,
Bell. Syst. Technol. J.
46
,
913
(
1967
).
14.
D. L.
Davydov
,
V. V.
Dunina
,
V. F.
Zolin
, and
G.
Koreneva
,
Opt. Spectrosc.
34
,
150
(
1973
).
15.
J. L.
Oudar
and
H.
Le Person
,
Opt. Commun.
15
,
258
(
1975
).
16.
D. S.
Chemla
,
J. L.
Oudar
, and
J.
Jerphagnon
,
Phys. Rev. B
12
,
4534
(
1975
).
17.
J. L.
Oudar
and
D. S.
Chemla
,
Opt. Commun.
13
,
164
(
1975
).
18.
J. L.
Oudar
,
D. S.
Chemla
, and
E.
Batifol
,
J. Chem. Phys.
67
,
1626
(
1977
).
19.
J. L.
Oudar
,
J. Chem. Phys.
67
,
446
(
1977
).
20.
J. L.
Oudar
and
D. S.
Chemla
,
J. Chem. Phys.
66
,
2664
(
1977
).
21.
B. F.
Levine
and
C. G.
Bethea
,
Appl. Phys. Lett.
24
,
445
(
1974
).
22.
B. F.
Levine
,
J. Chem. Phys.
63
,
115
(
1975
).
23.
B. F.
Levine
and
C. G.
Bethea
,
J. Chem. Phys.
63
,
2666
(
1975
).
24.
B. F.
Levine
,
Chem. Phys. Lett.
37
,
516
(
1976
).
25.
B. F.
Levine
and
C. G.
Bethea
,
J. Chem. Phys.
67
,
516
(
1976
).
26.
A.
Dulcic
and
C.
Sauteret
,
J. Chem. Phys.
69
,
3453
(
1978
).
27.
S. J.
Lalama
and
A. F.
Garito
,
Phys. Rev. A
20
,
1179
(
1979
).
28.
J. A.
Morrell
and
A. C.
Albrecth
,
Chem. Phys. Lett.
64
,
46
(
1979
).
29.
K. D.
Singer
and
A. F.
Garito
,
J. Chem. Phys.
75
,
3572
(
1981
).
30.
J.
Zyss
,
J. Chem. Phys.
70
,
3333
,
3341
(
1979
);
J.
Zyss
,
71
,
909
(
1979
).,
J. Chem. Phys.
31.
G. R.
Meredith
and
B.
Buchalter
,
J. Chem. Phys.
78
,
1938
(
1983
).
32.
D. S.
Chemla
,
J. L.
Oudar
, and
J.
Zyss
,
Echo des Recherches, CNET, English issue
,
47
, (
1981
).
33.
(a)
J. L.
Oudar
and
J.
Zyss
,
Phys. Rev. A
26
,
2016
(
1982
);
(b)
J.
Zyss
and
J. L.
Oudar
,
Phys. Rev. A
26
,
2028
(
1982
).
34.
D. Y.
Curtin
and
I. C.
Paul
,
Chem. Rev.
81
,
525
(
1982
).
35.
A.
Gavezzotti
and
M.
Simonetta
,
Chem. Rev.
82
,
1
(
1982
).
36.
I. S.
Rez
,
Sov. Phys. Crystallogr.
5
,
63
(
1960
).
37.
P.
Dauber
and
A.
Hagler
,
Acc. Chem. Res.
13
,
105
(
1980
).
38.
T. V.
Timofeeva
,
N. Y.
Chernikova
, and
P. M.
Zorkii
,
Russ. Chem. Rev.
49
,
509
(
1980
).
39.
S. K.
Kurtz
and
T. T.
Perry
,
J. Appl. Phys.
39
,
3798
(
1968
).
40.
M.
Sigelle
and
R.
Hierle
,
J. Appl. Phys.
52
,
4199
(
1981
).
41.
M.
Sigelle
,
J.
Zyss
, and
R.
Hierle
,
J. Non‐Cryst. Solids
47
,
287
(
1982
).
42.
G.
Meredith
,
Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem.
23
,
158
(
1982
) see also Design and Characterization of Molecular and Polymeric Nonlinear Optical Materials: Successes and Pitfalls in Ref. 1.
43.
J. L.
Stevenson
and
A. C.
Skapski
,
J. Phys. C
5
,
L223
(
1972
).
44.
J. L.
Stevenson
,
J. Phys. D
6
,
L13
(
1972
).
45.
A. C. Skapski and J. L. Stevenson, J. Chem. Soc. Perkin Trans. 2 1973, 1197.
46.
P. D.
Southgate
and
D. S.
Hall
,
Appl. Phys. Lett.
18
,
456
(
1971
).
47.
K.
Kato
,
IEEE J. Quantum Electron.
QE‐16
,
1288
(
1980
).
48.
B. F.
Levine
,
C. G.
Bethea
,
C. D.
Thurmond
,
R. T.
Lynch
, and
J. L.
Bernstein
,
J. Appl. Phys.
50
,
2523
(
1979
).
49.
G. F.
Lipscomb
,
A. F.
Garito
, and
R. S.
Narang
,
J. Chem. Phys.
75
,
1509
(
1981
).
50.
R. E.
Parker
,
Adv. Fluorine Chem.
3
,
63
(
1963
).
51.
H. E.
Smith
,
W. I.
Cozart
,
T.
de Paulis
, and
F. M.
Chen
,
J. Am. Chem. Soc.
101
,
5186
(
1979
).
52.
R. R.
Minesinger
and
M. J.
Kamlet
,
J. Phys. Chem.
78
,
494
(
1974
).
53.
S.
Millefiori
,
G.
Favini
,
A.
Millefiori
, and
D.
Grasso
,
Spectrochim. Acta Part A
33
,
21
(
1975
).
54.
T. P.
Carsey
,
G. L.
Findley
, and
S. P.
McGlynn
,
J. Am. Chem. Soc.
101
,
4502
(
1979
).
55.
O. S.
Khalil
and
S. P.
McGlynn
,
J. Lumin.
11
,
185
(
1975–76
).
56.
H. J.
Freund
and
R. W.
Bigelow
,
Chem. Phys.
55
,
407
(
1981
).
57.
J.
Tanaka
,
Bull. Chem. Soc. Jpn.
36
,
833
(
1963
).
58.
F.
Bertinelli
,
P.
Palmieri
,
A.
Brillante
, and
C.
Talliani
,
Chem. Phys.
25
,
333
(
1977
).
59.
P. Main, S. J. Fisfe, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson (1980). MULTAN 80. A system of computer programs for the automatic solution of crystal structures from x‐ray diffraction data. (Departement of Physics, University of York, England, and Louvain, Belgium.).
60.
G. M. Sheldrick (1976). SHELX. Program for crystal structure determination. (University of Cambridge, England.).
61.
IUPAC‐IUB Commission on Biochemical Nomenclature,
J. Mol. Biol.
52
,
1
(
1970
).
62.
K. N.
Trueblood
,
E.
Goldish
, and
J.
Donohue
,
Acta Crystallogr.
14
,
1009
(
1961
).
63.
M.
Colapietro
,
A.
Domenicano
,
C.
Marciante
, and
G.
Portalone
,
Acta Crystallogr. Sect A
37
,
C199
(
1981
).
64.
T. C. W.
Mak
and
J.
Trotter
,
Acta Crystallogr.
18
,
68
(
1965
).
65.
D. L. Hugues and J. Trotter, J. Chem. Soc. A 1971, 2181.
66.
T.
Ashida
and
M.
Kakudo
,
Bull. Chem. Soc. Jpn.
46
,
1129
(
1974
).
67.
R.
Balasubramanian
,
A. V.
Lakshminarayanan
,
M. N.
Sabesan
,
G.
Tegoni
,
K.
Venkatesan
, and
G. N.
Ramachandran
,
Int. J. Protein Res.
3
,
25
(
1971
).
68.
J. M.
Halbout
,
S.
Bilt
,
W.
Donaldson
, and
C. L.
Tang
,
IEEE J. Quantum Electron.
QE‐15
10
,
1176
(
1979
).
69.
C. J. F. Bottcher and P. Bordwyjk, Theory of Electric Polarization (Elsevier, Amsterdam, 1978).
70.
D. A.
Kleimman
,
Phys. Rev.
126
,
1977
(
1962
).
This content is only available via PDF.
You do not currently have access to this content.