A new propagation scheme for the time dependent Schrödinger equation is based on a Chebychev polynomial expansion of the evolution operator Û=exp(−iĤt). Combined with the Fourier method for calculating the Hamiltonian operation the scheme is not only extremely accurate but is up to six times more efficient than the presently used second order differencing propagation scheme.

1.
E. A.
McCullough
and
R. E.
Wyatt
,
J. Chem. Phys.
51
,
1253
(
1969
);
E. A.
McCullough
and
R. E.
Wyatt
,
54
,
3578
(
1971
).,
J. Chem. Phys.
2.
K. C.
Kulander
,
J. Chem. Phys.
69
,
5064
(
1978
).
3.
A.
Askar
and
S.
Cakmak
,
J. Chem. Phys.
68
,
2794
(
1978
).
4.
P. M.
Agrawal
and
L. M.
Raff
,
J. Chem. Phys.
77
,
3946
(
1982
).
5.
P. M.
Agrawal
and
L. M.
Raff
,
J. Chem. Phys.
77
,
3946
(
1982
).
6.
M. D.
Feit
,
J. A.
Fleck
Jr.
, and
A.
Steiger
,
J. Comp. Phys.
47
,
412
(
1982
).
7.
D.
Kosloff
and
R.
Kosloff
,
J. Comp. Phys.
52
,
35
(
1983
).
8.
R.
Kosloff
and
D.
Kosloff
,
J. Chem. Phys.
79
,
1823
(
1983
).
9.
A. T.
Yinnon
and
R.
Kosloff
,
Chem. Phys. Lett.
102
,
216
(
1983
).
10.
E.
Heller
,
J. Chem. Phys.
62
,
1544
(
1975
).
11.
J. C.
Light
,
Discuss Faraday Soc.
44
,
14
(
1969
).
12.
D. Gottlieb and S. Orszag, CBMS‐NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1977.
13.
H. Tal‐Ezer (preprint, 1984).
14.
A. T.
Yinnon
,
S.
Bosanac
,
R. B.
Gerber
, and
J. N.
Murrell
,
Chem. Phys. Lett.
58
,
364
(
1978
).
15.
R. Kosloff and C. Cerjan, J. Chem. Phys. (to be published).
This content is only available via PDF.
You do not currently have access to this content.