Laser vaporization of a substrate within the throat of a pulsed nozzle is used to generate a supersonic beam of carbon clusters. The neutral cluster beam is probed downstream by UV laser photoionization with time‐of‐flight mass analysis of the resulting photoions. Using graphite as the substrate, carbon clusters Cn for n=1–190 have been produced having a distinctly bimodal cluster size distribution: (i) Both even and odd clusters for Cn, 1≤n≤30; and (ii) only even clusters C2n, 20≤n≤90. The nature of the bimodal distribution, and the intensity alterations in the observed C+n signals are interpreted on the basis of cluster formation and stability arguments. Ionizing laser power dependences taken at several different photon energies are used to roughly bracket the carbon cluster ionization potentials, and, at high laser intensity, to observe the onset of multiphoton fragmentation. By treating the graphite rod with KOH, a greatly altered carbon cluster distribution with mixed carbon/potassium clusters of formula K2C2n is produced.

1.
(a)
T. G.
Dietz
,
M. A.
Duncan
,
D. E.
Powers
, and
R. E.
Smalley
,
J. Chem. Phys.
74
,
6511
(
1981
);
(b)
D. W.
Powers
,
S. G.
Hansen
,
M. E.
Guesic
,
A. C.
Pulu
,
J. B.
Hopkins
,
T. G.
Dietz
,
M. A.
Duncan
,
P. R. R.
Langridge‐Smith
, and
R. E.
Smalley
,
J. Phys. Chem.
86
,
2556
(
1982
).;
(c)
D. L.
Michalopoulos
,
M. E.
Guesic
,
S. G.
Hansen
,
D. E.
Powers
, and
R. E.
Smalley
,
J. Phys. Chem.
86
,
2556
(
1982
).,
J. Phys. Chem.
2.
(a)
V. E.
Bondybey
,
J. Phys. Chem.
86
,
3396
(
1982
);
(b)
J. L.
Gole
,
J. H.
English
, and
V. E.
Bondybey
,
J. Phys. Chem.
86
,
2560
(
1982
); ,
J. Phys. Chem.
(c)
V. E.
Bondybey
and
J. H.
English
,
J. Chem. Phys.
76
,
2165
(
1982
).
3.
(a)
E. A.
Rohlfing
,
D. M.
Cox
, and
A.
Kaldor
,
Chem. Phys. Lett.
99
,
161
(
1983
);
(b) D. M. Cox, E. A. Rohfling, and A. Kaldor, J. Vac. Sci. Technol. A (in press).
4.
E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Phys. Chem. (in press).
5.
J. B.
Hopkins
,
P. R. R.
Langridge‐Smith
,
M. D.
Morse
, and
R. E.
Smalley
,
J. Chem. Phys.
78
,
1627
(
1983
).
6.
(a)
N.
Fuerstenau
and
F.
Hillenkamp
,
Int. J. Mass Spectrom. Ion Phys.
35
,
135
(
1981
);
(b)
N.
Fuerstenau
,
Fresenius Z. Anal. Chem.
308
,
201
(
1981
).
7.
A.
El Goresy
and
G.
Donnay
,
Science
161
,
363
(
1968
).
8.
(a)
A. M.
Sladov
,
V. I.
Kasatochin
,
Yu P.
Kudryavtseu
, and
V. V.
Korshak
,
Inv. Akad. Nauk SSSR Ser. Khim
12
,
2697
(
1968
);
(b)
V. I.
Kasatochin
,
N. M.
Popov
,
A. M.
Sladov
,
Yu P.
Kudryavtseu
, and
V. V.
Korshak
,
Dokl. Akad. Nauk SSSR
177
,
358
(
1967
).
(c)
A. M.
Sladov
and
Yu P.
Kudryavstev
,
Priroda
51
,
37
(
1969
).
9.
T. G.
Dietz
,
M. A.
Duncan
,
R. E.
Smalley
,
D. M.
Cox
,
J. A.
Horsely
, and
A.
Kaldor
,
J. Chem. Phys.
77
,
4417
(
1982
).
10.
H.
Hintenberger
,
J.
Franzen
, and
K. D.
Schuy
,
Z. Naturforsch. Teil A
18
,
1236
(
1963
).
11.
R. E.
Honig
,
J. Chem. Phys.
22
,
126
(
1954
).
12.
M.
Leleyter
and
P.
Joyes
,
Radiat. Eff.
18
,
105
(
1973
).
13.
K. S.
Pitzer
and
E.
Clementi
,
J. Am. Chem. Soc.
21
,
4477
(
1959
).
14.
R.
Hoffmann
,
Tetrahedron
22
,
521
(
1966
).
15.
D. W.
Ewing
and
G. V.
Pfeiffer
,
Chem. Phys. Lett.
86
,
365
(
1982
).
16.
N.
Fuerstenau
,
F.
Hillenkamp
, and
R.
Nitschi
,
Int. J. Mass Spectrom. Ion Phys.
31
,
85
(
1979
).
17.
(a) The nonequilibrium plasma generated by pulsed laser evaporization of graphite foil was estimated (Ref. 6) to have an electron temperature of 40 000 to 60 000 K whereas the ion and neutral temperature was estimated to be about 4 000 K, reasonably close to the sublimation temperature of graphite (3652–3697) [Ref. 15(b)];
(b) Handbook of Chemistry and Physics, 62nd ed., edited by R. C. Weast (Chemical Rubber, Boca Raton, FL, 1981–1982), p. B‐89.
18.
M.
Kertesz
,
J.
Koller
, and
A.
Azman
,
J. Chem. Phys.
68
,
2779
(
1978
).
19.
A. G.
Whittaker
,
Science
200
,
763
(
1978
).
20.
For carbon atom, C. E. Moore, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. No. 26 (U.S. GPO, Washington, D.C., 1971), Vol I.
21.
(a) P. M. Williams, Handbook of X‐Ray and Ultraviolet Photoelectron Spectroscopy, edited by D. Briggs (Hayden, London, 1978), Chap. 9;
(b) S. Kelemen (private communications);
(c)
R. F.
Willis
,
B.
Fuebacher
, and
B.
Fritton
,
Phys. Rev. B
4
,
2441
(
1971
).
22.
(a)
S. K.
Gupta
and
K. A.
Gringerich
,
J. Chem. Phys.
71
,
3072
(
1979
);
(b) Levin and Lias, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. No. 71 (U.S. GPO, Washington, D.C., 1982).
23.
J.
Drowart
,
R. P.
Burns
,
G.
DeMaria
, and
M. G.
Inghram
,
J. Chem. Phys.
31
,
1131
(
1959
).
24.
(a)
D. W.
Squire
,
M. P.
Barbalas
, and
R. B.
Bernstein
,
J. Phys. Chem.
87
,
1701
(
1983
);
(b)
W.
Dietz
,
H. J.
Neusser
,
U.
Boesl
,
E. W.
Schlag
, and
S. H.
Lin
,
Chem. Phys.
66
,
105
(
1982
);
(c)
P.
Hering
,
A. G. M.
Maaswinkel
, and
K. L.
Kompa
,
Chem. Phys. Lett.
83
,
222
(
1981
);
(d)
H. H.
Nelson
,
H.
Helvajian
,
L.
Pasternack
, and
J. R.
McDonald
,
Chem. Phys.
73
,
431
(
1982
).
25.
J.
Peric‐Radic
,
J.
Romelt
, and
S. D.
Peyerimhoff
,
Chem. Phys. Lett.
50
,
344
(
1977
).
26.
C. M. Rohlfing (personal communication).
This content is only available via PDF.
You do not currently have access to this content.