Recent publications have suggested that the satisfaction of a principle we call kineticbalance can provide variational safety in Dirac calculations. The theoretical foundation for this proposal is examined, first in simple one‐electron problems, and then (less rigorously) in SCF calculations. The conclusion is that finite basis calculations using kinetic balance are safe from catastrophic variational collapse, but that the ‘‘bounds’’ provided by these calculations can be in error by an amount of order 1/c4. The bounds are applicable to total SCF energies, but not to SCF orbital energies. The theory is illustrated by a series of one‐electron calculations.

1.
W. N.
Asaad
,
Proc. Phys. Soc. London Sect. A.
76
,
641
(
1960
).
2.
Y. K.
Kim
,
Phys. Rev.
154
,
17
(
1967
).
3.
A. D. McLean and Y. S. Lee, in Current Aspects of Quantum Chemistry, edited by R. Carbo (Elsevier, Amsterdam, 1982), p. 219;
Y. S.
Lee
and
A. D.
McLean
,
J. Chem. Phys.
76
,
735
(
1982
).
4.
Y.
Ishikawa
,
R. C.
Binning
, Jr.
, and
K. M.
Sando
,
Chem. Phys. Lett.
101
,
111
(
1983
).
5.
G. W. F.
Drake
and
S. P.
Goldman
,
Phys. Rev. A
23
,
2093
(
1980
).
6.
I. P.
Grant
,
Phys. Rev. A
25
,
1230
(
1982
).
7.
W. H. E.
Schwarz
and
H.
Wallmeier
,
Mol. Phys.
46
,
1045
(
1982
).
8.
F.
Rosicky
and
Mark
,
Theor. Chim. Acta
54
,
35
(
1979
).
9.
E.q.,
J. P.
Desclaux
,
At. Data Nucl. Data Tables
12
,
311
(
1973
).
10.
J. P.
Desclaux
and
P.
Pyykko
,
Chem. Phys. Lett.
29
,
534
(
1974
);
J. P.
Desclaux
and
P.
Pyykko
,
39
,
300
(
1976
); ,
Chem. Phys. Lett.
J. P.
Desclaux
and
P.
Pyykko
,
42
,
545
(
1976
).,
Chem. Phys. Lett.
11.
P.
Pyykko
,
Ad. Quantum Chem.
11
,
353
(
1978
).
12.
R. G.
Wilson
and
C. S.
Sharma
,
J. Phys. B
13
,
3285
(
1980
).
13.
J. O.
Hirschfelder
,
K.‐H.
Yang
, and
B. R.
Johnson
,
J. Chem. Phys.
76
, (
1982
).
14.
L. L.
Foldy
and
S. A.
Wouthuysen
,
Phys. Rev.
78
,
29
(
1950
);
N. C.
Pyper
,
Mol. Phys.
39
,
1327
(
1980
).
15.
S. N.
Datta
,
Chem. Phys. Lett.
74
,
568
(
1980
).
16.
H.
Wallmeier
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
78
,
341
(
1981
).
17.
F.
Mark
and
W. H. E.
Schwarz
,
Phys. Rev. Lett.
48
,
673
(
1982
).
18.
H.
Wallmeier
and
W.
Kutzelnigg
,
Phys. Rev. A
28
,
3092
(
1983
).
19.
G. E.
Brown
and
D. G.
Ravenhall
,
Proc. R. Soc. London Ser. A
208
,
532
(
1951
).
20.
J.
Sucher
,
Phys. Rev. A
22
,
348
(
1980
).
21.
M. H.
Mittleman
,
Phys. Rev. A
24
,
1167
(
1981
).
22.
J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon, Oxford, 1965), p. 71.
23.
B. Parlett, The Symmetric Eigenvalue Problem (Prentice‐Hall, Engle‐wood Cliffs, 1980), p. 186. Also known as MacDonald’s theorem or the Hylleraas‐Undheim theorem.
24.
R. E.
Stanton
,
J. Chem. Phys.
48
,
257
(
1968
);
R. E.
Stanton
,
75
,
3426
(E) (
1981
).,
J. Chem. Phys.
25.
P. W.
Langhoff
,
M.
Karplus
, and
R. P.
Hurst
,
J. Chem. Phys.
44
,
505
(
1966
).
26.
K. Ruedenberg, R. C. Raffenetti, and R. D. Bardo, in Energy, Structure and Reactivity, edited by D. W. Smith (Wiley, New York, 1973), p. 164.
27.
S.
Huzinaga
,
J. Chem. Phys.
67
,
5973
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.