The disposal of excess energy above the dissociation threshold into internal excitation and translation in a photochemical decomposition of C2N2 has been determined by utilizing a technique by which measurements of the recoil velocity distribution for particular rotational states are possible. Simple phase space theory calculations appear to give a fairly good interpretation of the rotational energy distributions in a particular vibrational state, while the vibrational energy disposal is definitely nonstatistical with only about 63% of the total population predicted by statistical calculation in the first vibrational state and no excitation observed in the v=2 state. Our experimental results support the previous predictions of high translational energy disposal ( fT=75%) compared to a low or moderate product internal state excitations ( fR=18.6%, fv=6.4%). We also measure the dissociation energy of C2N2 to be 133±1 kcal/mol rather than the previously reported 128±1 kcal/mol.

1.
(a)
S. R.
Leone
,
Adv. Chem. Phys.
50
,
255
(
1982
);
(b)
M. N. R.
Ashfold
,
M. T.
MacPherson
, and
J. P.
Simons
,
Top. Curr. Chem.
86
,
1
(
1979
);
(c)
W. H.
Gelbart
,
Annu. Rev. Phys. Chem.
28
,
323
(
1977
);
(d)
M.
Shapiro
and
R.
Bersohn
,
Annu. Rev. Phys. Chem.
33
,
409
(
1982
).,
Annu. Rev. Phys. Chem.
2.
G.
Ondrey
,
N.
van Veen
, and
R.
Bersohn
,
J. Chem. Phys.
78
,
3732
(
1983
).
3.
J.
Pfab
,
J.
Häger
, and
W.
Krieger
,
J. Chem. Phys.
78
,
266
(
1983
).
4.
R.
Vasudev
,
R. N.
Zare
, and
R. N.
Dixon
,
J. Chem. Phys.
80
,
4863
(
1983
).
5.
R. N.
Zare
and
P. J.
Dagdigian
,
Science
185
,
739
(
1974
).
6.
J. L.
Kinsey
,
Annu. Rev. Phys. Chem.
28
,
349
(
1977
).
7.
(a)
P. J.
Dagdigian
and
R. N.
Zare
,
J. Chem. Phys.
64
,
2632
(
1976
);
(b)
G. P.
Smith
and
R. N.
Zare
,
J. Chem. Phys.
67
,
4912
(
1977
).,
J. Chem. Phys.
8.
J. L.
Kinsey
,
J. Chem. Phys.
66
,
2560
(
1977
).
9.
R. J.
Cody
and
M. J.
Sabety‐Dzvonik
,
J. Chem. Phys.
66
,
2145
(
1977
).
10.
J. B.
Halpern
and
W. M.
Jackson
,
J. Phys. Chem.
86
,
973
(
1982
).
11.
W. M.
Jackson
and
J. B.
Halpern
,
J. Chem. Phys.
70
,
2373
(
1979
).
12.
N.
Basco
,
J. E.
Nicholas
,
R. G. W.
Norrish
, and
W. H. J.
Vickers
,
Proc. R. Soc. London Ser. A
272
,
147
(
1963
).
13.
H. Okabe, Photochemistry of Small Molecules (Wiley‐Interscience, New York, 1978).
14.
S.
Bell
,
G. J.
Cartwright
,
G. B.
Rish
,
D.
O’Hare
,
R. K.
Ritchie
,
A. D.
Walsh
, and
P. A.
Warsop
,
J. Mol. Spectrosc.
30
,
162
(
1969
).
15.
W. M.
Jackson
,
J. Photochem.
17
,
509
(
1981
).
16.
W. R.
Gentry
and
C. F.
Giese
,
Rev. Sci. Instrum.
49
,
595
(
1978
).
17.
T. G.
Slanger
,
W. K.
Bischel
, and
M. J.
Byer
,
J. Chem. Phys.
79
,
2231
(
1983
).
18.
P. J.
Dagdigian
,
H. W.
Cruse
,
A.
Schultz
, and
R. N.
Zare
,
J. Chem. Phys.
61
,
4450
(
1974
).
19.
D. R.
Guyer
,
L.
Hüwel
, and
S. R.
Leone
,
J. Chem. Phys.
79
,
1259
(
1983
).
20.
(a)
M.
Heaven
,
T. A.
Miller
, and
V. F.
Bondybey
,
Chem. Phys. Lett.
84
,
1
(
1981
);
(b)
M. N. R.
Ashfold
and
J. P.
Simons
,
J. Chem. Soc. Faraday Trans. 2
73
,
858
(
1977
).
21.
J. M. Lisy (private communication).
22.
M.
Gurnick
,
J.
Chaiken
,
T.
Benson
, and
J. D.
McDonald
,
J. Chem. Phys.
74
,
99
(
1981
).
23.
G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, Princeton, 1950), Vol. 1.
24.
S. C.
Woo
and
R. M.
Badger
,
Phys. Rev.
39
,
932
(
1932
).
25.
A. G.
Maki
,
J. Chem. Phys.
43
,
3193
(
1965
).
26.
(a)
J. C.
Light
,
Discuss. Faraday Soc.
44
,
14
(
1967
);
(b)
P.
Pechukas
,
J. C.
Light
, and
C.
Rankin
,
J. Chem. Phys.
44
,
794
(
1966
).
This content is only available via PDF.
You do not currently have access to this content.