Recently, LeSar and Gordon [J. Chem. Phys. 78, 4991 (1983)] reported calculations of the crystal structures of solid N2 and CO2 to 10 GPa using electron‐gas short‐range energies and pairwise dispersion energies that included only the anisotropic C6/r6 term. While the calculated zero temperature pressure‐volume curve was in excellent agreement with the experimental results, the structure that was calculated to be most stable at high pressure (the β‐O2 structure with space group Rm) is not consistent with experimental spectroscopic results. Here we report calculations on solid N2 using a pairwise damped‐dispersion energy that includes terms up to C10/r10. While we fail to predict the low pressure, low temperature Pa3(α)–P42/mnm(γ) transition, we find a transition from the P42/mnm structure to one with a space group Rc at 1.9 GPa, in agreement with the experimental transition pressure. The calculated structure is consistent with the high pressure experimental results. Possible distortions of the Rc to a R3c structure were examined, but no distortions were found to 75 GPa.

1.
A.
Jayaraman
,
Rev. Mod. Phys.
55
,
65
(
1983
).
2.
See, for example, A. I. Kitaigorodsky, Molecular Crystals and Molecules (Academic, New York, 1973), and Refs. 16, 17, and 24 below.
3.
G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces (Clarendon, Oxford, 1981).
4.
R.
LeSar
,
Phys. Rev. B
28
,
6812
(
1983
).
5.
R.
LeSar
and
R. G.
Gordon
,
Phys. Rev. B
25
,
7221
(
1982
);
R.
LeSar
and
R. G.
Gordon
,
J. Chem. Phys.
77
,
3682
(
1982
).
6.
R.
LeSar
and
R. G.
Gordon
,
J. Chem. Phys.
78
,
4991
(
1983
).
7.
M.
Waldman
and
R. G.
Gordon
,
J. Chem. Phys.
71
,
1325
(
1979
);
R. G.
Gordon
and
Y. S.
Kim
,
J. Chem. Phys.
56
,
3122
(
1972
).,
J. Chem. Phys.
8.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
66
,
1496
(
1977
).
9.
R.
LeSar
,
J. Phys. Chem.
88
,
4272
(
1984
).
10.
Energy: 1 hartree = 2Ry = 27.211 63eV = 4.359 57×10−11erg == = 627.5244 kcal/mol. Distance: 1 bohr = 0.529 1077 Å; quadrupole moment: 1 a.u. = 1.345 04 10−26 esu cm2.
11.
J.
Hepburn
,
G.
Scoles
, and
R.
Penco
,
Chem. Phys. Lett.
36
,
451
(
1975
).
12.
F.
Mulder
,
G.
van Dijk
, and
A.
van der A voird
,
Mol. Phys.
39
,
407
(
1980
).
13.
T. A.
Scott
,
Phys. Rep.
27
,
89
(
1976
).
14.
S.
Buchsbaum
,
R. L.
Mills
, and
D.
Schiferl
,
J. Phys. Chem.
88
,
2522
(
1984
).
15.
D. T.
Cromer
,
R. L.
Mills
,
D.
Schiferl
, and
L. A.
Schwalbe
,
Acta. Crystallogr. Sect. B
37
,
8
(
1981
).
16.
V.
Chandrasekharan
,
R. D.
Etters
, and
K.
Kobashi
,
Phys. Rev. B
28
,
1095
(
1983
).
17.
S.
Nosé
and
M. L.
Klein
,
Phys. Rev. Lett.
50
,
1207
(
1983
).
18.
D. Schiferl (personal communication).
19.
J. C.
Raich
and
R. L.
Mills
,
J. Chem. Phys.
55
,
1811
(
1971
).
20.
E. M.
Horl
,
Acta. Crystallogr.
15
,
845
(
1962
).
21.
M. I.
Bagatskii
,
V. A.
Kucheryavy
,
V. G.
Manzhelli
, and
V. A.
Popov
,
Phys. Status Solidi
26
,
453
(
1968
).
22.
M. S. H.
Ling
and
M.
Rigby
,
Mol. Phys.
51
,
855
(
1984
).
23.
A. D.
Buckingham
,
R. L.
Disch
, and
D. A.
Dunmer
,
J. Am. Chem. Soc.
90
,
3104
(
1968
).
24.
K.
Kobashi
,
A. A.
Helmy
,
R. D.
Etters
, and
I. L.
Spain
,
Phys. Rev. B
26
,
2966
(
1982
).
25.
W. C. Hamilton, International Tables for X‐ray Crystallography (Kynoch, Birmingham, 1974).
26.
B.
dinger
,
J. Chem. Phys.
90
,
1309
(
1984
).
27.
R. M.
Berns
and
A.
van der Avoird
,
J. Chem. Phys.
72
,
6107
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.