Ultrahigh‐resolution photodetachment spectroscopy of acetaldehyde enolate negative ion has revealed ∼50 narrow resonances near threshold, corresponding to excitation to a diffuse state in which the electron is weakly bound by the field of the molecular dipole. A complete analysis of rotational transitions between the ground valence state and the excited dipole‐bound state has been carried out, yielding spectroscopic constants and geometries for both states. In analogy to Rydberg states, the structure of the ‘‘neutral core’’ of the dipole‐bound state is like that of the neutral radical. The dependence of autodetachment lifetimes upon the rotational quantum numbers of the dipole‐bound state has been measured. Bound levels of the dipole‐bound anion state are readily electric‐field detached. The selection rules and dynamics of autodetachment from the dipole‐bound state are discussed.

1.
K. R.
Lykke
,
R. D.
Mead
, and
W. C.
Lineberger
,
Phys. Rev. Lett.
52
,
2221
(
1984
).
2.
Dipole‐bound states have recently been observed in FeO by K. R. Lykke and D. Neumark working at JILA. Their results will appear in a subsequent paper.
3.
A. H.
Zimmerman
and
J. I.
Brauman
,
J. Chem. Phys.
66
,
5823
(
1977
);
R. L.
Jackson
,
A. H.
Zimmerman
, and
J. I.
Brauman
,
J. Chem. Phys.
71
,
2088
(
1979
).,
J. Chem. Phys.
4.
R. L.
Jackson
,
P. C.
Hiberty
, and
J. I.
Brauman
,
J. Chem. Phys.
74
,
3705
(
1981
).
5.
W. R.
Garrett
,
Chem. Phys. Lett.
5
,
393
(
1970
);
W. R.
Garrett
,
Phys. Rev. A
3
,
961
(
1971
).
6.
E.
Fermi
and
E.
Teller
,
Phys. Rev.
72
,
406
(
1947
).
7.
A. S.
Wightman
,
Phys. Rev.
77
,
521
(
1950
).
8.
J. E.
Turner
and
K.
Fox
,
Phys. Lett.
23
,
547
(
1966
);
W. B.
Brown
and
R. E.
Roberts
,
J. Chem. Phys.
46
,
2006
(
1967
);
M. H.
Mittelman
and
R. E.
von Holdt
,
Phys. Rev.
140
,
726
(
1965
);
J.‐M.
Levy‐Leblond
,
Phys. Rev.
153
,
1
(
1967
).,
Phys. Rev.
A good review of the problem is provided by
J. E.
Turner
,
Am. J. Phys.
45
,
758
(
1977
).
9.
C. A.
Coulson
and
M.
Walmsley
,
Proc. Phys. Soc.
91
,
31
(
19671
);
O. H.
Crawford
,
Proc. Phys. Soc.
91
,
279
(
1967
).
10.
W. R. Garrett, in Physics of Electronic and Atomic Collisions, edited by S. Datz (North‐Holland, Amsterdam, 1982), pp. 65–77.
11.
W. R.
Garrett
,
J. Chem. Phys.
73
,
5721
(
1980
);
W. R.
Garrett
,
77
,
3666
(
1982
).,
J. Chem. Phys.
12.
K. D.
Jordan
and
W.
Luken
,
J. Chem. Phys.
64
,
2760
(
1976
).
13.
K. D.
Jordan
and
J. J.
Wendoloski
,
Chem. Phys.
21
,
145
(
1977
);
K. D.
Jordan
and
R.
Seeger
,
Chem. Phys. Lett.
54
,
320
(
1978
);
K. D.
Jordan
and
J. J.
Wendoloski
,
Mol. Phys.
35
,
223
(
1978
);
B.
Liu
,
K.
O‐Ohata
, and
K.
Kirby‐Docken
,
J. Chem. Phys.
67
,
1850
(
1977
);
E. A.
McCullough
,
J. Chem. Phys.
75
,
1579
(
1981
); ,
J. Chem. Phys.
L.
Adamowicz
and
E. A.
McCullough
,
Chem. Phys. Lett.
107
,
72
(
1984
).
14.
J. L.
Carlsten
,
J. R.
Peterson
, and
W. C.
Lineberger
,
Chem. Phys. Lett.
37
,
5
(
1976
).
15.
S. F.
Wong
and
G. J.
Schulz
,
Phys. Rev. Lett.
33
,
134
(
1974
).
16.
K.
Rohr
and
F.
Linder
,
J. Phys. B
9
,
2521
(
1976
).
17.
K.
Rohr
,
J. Phys. B
10
,
1175
(
1977
);
G. J.
Verhaart
,
W. J.
Van der Haart
, and
H. H.
Brongersma
,
Chem. Phys.
34
,
161
(
1978
).
18.
W.
Domcke
,
L. S.
Cederbaum
, and
F.
Kaspar
,
J. Phys. B
12
,
L359
(
1979
);
W.
Domcke
and
L. S.
Cederbaum
,
J. Phys. B
14
,
149
(
1980
).,
J. Phys. B
19.
R. W.
Wetmore
,
H. F.
Schaefer
III
,
P. C.
Hiberty
, and
J. I.
Brauman
,
J. Am. Chem. Soc.
102
,
5470
(
1980
).
20.
E. S.
Huyser
,
D.
Feller
,
W. T.
Borden
, and
E. R.
Davidson
,
J. Am. Chem. Soc.
104
,
2956
(
1982
).
21.
M.
Dupuis
,
J. J.
Wendoloski
, and
W. A.
Lester
,
J. Chem. Phys.
76
,
488
(
1982
).
22.
U.
Hefter
,
R. D.
Mead
,
P. A.
Schulz
, and
W. C.
Lineberger
,
Phys. Rev. A
28
,
1429
(
1983
).
23.
H. D.
Zeman
,
Rev. Sci. Instrum.
48
,
1079
(
1977
).
24.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
25.
L. Hollberg and J. L. Hall (private communication).
26.
J. C.
Bergquist
and
L.
Burkins
,
Opt. Commun.
50
,
379
(
1984
).
27.
S. A.
Lee
and
J. L.
Hall
,
Appl. Phys. Lett.
25
,
367
(
1976
).
28.
R.
Balhorn
,
H.
Kunzmann
, and
F.
Lebowsky
,
Appl. Opt.
11
,
742
(
1972
).
29.
G. B.
Ellison
,
P. C.
Engelking
, and
W. C.
Lineberger
,
J. Phys. Chem.
86
,
4873
(
1982
).
30.
D. G. Leopold, K. K. Murray, and W. C. Lineberger (in preparation).
31.
G.
Inoue
and
H.
Akimoto
,
J. Chem. Phys.
74
,
425
(
1981
).
32.
G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand, New York, 1967).
33.
M. E.
Jacox
,
Chem. Phys.
69
,
407
(
1982
).
34.
S. R.
Polo
,
Can. J. Phys.
35
,
880
(
1957
).
35.
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1955).
36.
G. W.
King
,
R. M.
Hainer
, and
P. C.
Cross
,
J. Chem. Phys.
11
,
27
(
1943
).
37.
C. Kunasz, program NLHOUS (private communication).
38.
T.
Oka
and
Y.
Morino
,
J. Mol. Spectrosc.
6
,
472
(
1961
);
M.
Nakata
,
K.
Kuchitsu
, and
I. M.
Mills
,
J. Phys. Chem.
88
,
344
(
1984
).
39.
L. F.
DiMauro
,
M.
Heaven
, and
T. A.
Miller
,
J. Chem. Phys.
81
,
2339
(
1984
).
40.
W. Gordy and R. L. Cook, Microwave Molecular Spectra (Wiley‐Interscience, New York, 1970).
41.
R. S.
Mulliken
,
Phys. Rev.
59
,
873
(
1941
).
42.
J. T.
Hougen
,
J. Chem. Phys.
37
,
1433
(
1962
);
J. T.
Hougen
,
39
,
358
(
1963
).,
J. Chem. Phys.
43.
In analogy with field ionization of Rydberg atoms and molecules [
C. J.
Latimer
,
Contemp. Phys.
20
,
631
(
1979
)], we may estimate the outermost extent rmax of the bound electron. Treating the dipole field as isotropic, we set the potential V = −Er−eD/r2. Using the dipole moment D, the electric field E. and finding the barrier top where dV/dr = 0, we obtain rmax≈700Å.
44.
A crude estimate of the size of the bound electron’s orbital may be obtained from setting eD/r2 = Eb, where D is the dipole moment, and Eb is the binding energy. This gives a mean electron radius r of about 125 Å.
This content is only available via PDF.
You do not currently have access to this content.