Detonation fronts in solid high explosives have been examined through measurements of particle velocity histories resulting from the interaction of a detonation wave with a thin metal foil backed by a water window. Using a high time resolution velocity‐interferometer system, experiments were conducted on three explosives—a TATB (1,3,5‐triamino‐trinitrobenzene)‐based explosive called PBX‐9502, TNT (2,4,6‐Trinitrotoluene), and CP (2‐{5‐cyanotetrazolato} pentaamminecobalt {III} perchlorate). In all cases, detonation‐front rise times were found to be less than the 300 ps resolution of the interferometer system. The thermodynamic state in the front of the detonation wave was estimated to be near the unreacted state determined from an extrapolation of low‐pressure unreacted Hugoniot data for both TNT and PBX‐9502 explosives. Computer calculations based on an ignition and growth model of a Zeldovich–von Neumann–Doering (ZND) detonation wave show good agreement with the measurements. By using the unreacted Hugoniot and a JWL equation of state for the reaction products, we estimated the initial reaction rate in the high explosive after the detonation wave front interacted with the foil to be 40 μs1 for CP, 60 μs1 for TNT, and 80 μs1 for PBX‐9502. The shape of the profiles indicates the reaction rate decreases as reaction proceeds.

1.
Ya. B.
Zeldovich
,
Zh. Eksp. Teor. Fiz.
10
,
542
(
1940
);
English translation NACA Tech. Memo. 1261 (1960).
2.
J. Von Neumann, OSRD Report No. 549, 1942.
3.
W.
Doering
,
Ann. Phys.
43
,
421
(
1943
).
4.
M. A. Cook, The Science of High Explosives (Krieger, Huntington, N.Y., 1971).
5.
B. Hayes and R. R. McGuire, in Proceedings of Symposium on High Dynamic Pressures (Commissariat a l’EnergieAtomique, Paris, 1978), p. 245.
6.
R. E.
Duff
and
E.
Houston
,
J. Chem. Phys.
23
,
1268
(
1955
).
7.
W. E.
Deal
,
J. Chem. Phys.
27
,
796
(
1957
).
8.
A. N.
Dremin
and
P. F.
Pokhil
,
Proc. Acad. Sci. USSR, Phys. Chem. Sect.
127
,
723
(
1959
).
9.
A. N.
Dremin
and
P. F.
Pokhil
,
Proc. Acad. Sci. USSR, Phys. Chem. Sect.
128
,
839
(
1959
).
10.
A. N.
Dremin
and
P. F.
Pokhil
,
Russ. J. Phys. Chem.
34
,
1206
(
1960
).
11.
B. G. Craig, in Tenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1965), p. 863.
12.
(a)
W. C.
Davis
,
B. G.
Craig
, and
J. B.
Ramsey
,
Phys. Fluids
8
,
2169
(
1965
);
(b) J. B. Bdzil and W. C. Davis, Los Alamos Scientific Laboratory Report LA‐5926‐MS, 1975.
13.
V. A.
Veretennikov
,
A. N.
Dremin
,
O. K.
Rozanov
, and
K. K.
Shvedov
,
Combust. Explos. Shock Waves (USSR)
3
,
1
(
1967
).
14.
V. M.
Zaitsev
,
P. F.
Pokhil
, and
K. K.
Shvedov
,
Proc. Acad. Sci. USSR, Phys. Chem. Sect.
132
,
529
(
1960
).
15.
A. N. Dremin, V. M. Zaitsev, V. S. Ilyukhin, and P. F. Pokhil, in Eighth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1960), p. 610.
16.
A. N.
Dremin
,
O. K.
Rozanov
, and
I. G.
Koba
,
Combust. Explos. Shock Waves (USSR)
1
,
52
(
1965
).
17.
A. N.
Dremin
and
S. A.
Koldunov
,
Vzryvnoye delo
63
,
37
(
1967
);
English translation is PB‐188145‐T.
18.
W. C. Davis, in Sixth Symposium (International) on Detonation, ACR‐221 (Office of Naval Research, Coronado, CA., 1976), p. 637.
19.
B.
Hayes
,
Rev. Sci. Instrum.
52
,
594
(
1981
).
20.
B. Hayes and C. M. Tarver, in Seventh Symposium (International) on Detonation, NSWC MP 82–334 (Naval Surface Weapons Center, Annapolis, MD., 1981), p. 1029.
21.
V. A. Veretennikov, Papers of the Sixth AU‐Union Symposium on Combustion and Explosion (USSR), 1980, p. 3.
22.
W. C. Davis and D. Venable, in Fifth Symposium (International) on Detonation, ACR‐184 (Office of Naval Research, Pasadena, CA., 1970), p. 13.
23.
C. L. Mader and B. G. Craig, Los Alamos Scientific Laboratory Report LA‐5865, 1975.
24.
W. Fickett and W. C. Davis, Detonation (University of California, Berkeley, 1979). Chapter 7 is an excellent review of much of the work done on gaseous, as well as condensed explosives, with regard to structure in a detonation front and what causes it.
25.
C. M.
Tarver
,
Combust. Flame
46
,
157
(
1982
).
26.
E. L.
Lee
and
C. M.
Tarver
,
Phys. Fluids
23
,
2362
(
1980
).
27.
C. M. Tarver and J. O. Hallquist, in Seventh Symposium (International) on Detonation, NSWC MP 82–334 (Naval Surface Weapons Center, Annapolis, MD., 1981), p. 488.
28.
W. G. Von Holle and CM. Tarver, in Seventh Symposium (International) on Detonation, NSWC MP 83–334 (Naval Surface Weapons Center, Annapolis, MD., 1981), p. 993.
29.
C. M. Tarver and P. A. Urtiew, paper presented at the Ninth International Colloquium on Dynamics of Explosions and Reactive Systems, Poitiers, France, July, 1983.
30.
C. M. Tarver, N. L. Parker, H. G. Palmer, B. Hayes, and L. M. Erickson, J. Energ. Mater, (submitted).
31.
L. M. Erickson, H. G. Palmer, N. L. Parker, and H. C. Vantine, in Shock Waves in Condensed Matter, edited by W. J. Nellis, L. Seaman, and R. A. Graham (American Institute of Physics, New York, 1982), p. 553.
32.
J. C. Cast, H. C. Hornig, and J. W. Kury, Lawrence Livermore Laboratory Report UCRL‐50645, 1970.
33.
D. D.
Bloomquist
and
S. A.
Sheffield
,
J. Appl. Phys.
54
,
1717
(
1983
).
34.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
43
,
4669
(
1972
).
35.
The IMACON 790 streak camera is made by Hadalan Photonics Limited, Newhouse Laboratories, Bovington, Herts., United Kingdom. It is sold in the United States by Marco Scientific, Sunnyvale, CA.
36.
N. L. Parker and H. H. Chau, Lawrence Livermore Laboratory Report UCID‐17531, 1977.
37.
L. M.
Barker
and
K. W.
Schuler
,
J. Appl. Phys.
45
,
3692
(
1974
).
38.
R. E.
Setchell
,
J. Appl. Phys.
50
,
8186
(
1979
).
39.
R. A. Lederer, S. A. Sheffield, A. C. Schwarz, and D. B. Hayes, in Sixth Symposium (International) on Detonation, ACR‐221 (Office of Naval Research, Coronado, CA., 1976), p. 668.
40.
L. C.
Chhabildas
and
J. R.
Asay
,
J. Appl. Phys.
50
,
2749
(
1979
).
41.
A. C.
Mitchell
and
W. J.
Nellis
,
J. Chem. Phys.
76
,
6273
(
1982
).
42.
R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, in High Velocity Impact Phenomena, edited by R. Kinslow (Academic, New York, 1970).
43.
M. Van Thiel, J. Shaner, and E. Salinas, Lawrence Livermore Laboratories Report UCRL‐50108, 1977, p. 388.
44.
LASL Explosive Property Data, edited by T. R. Gibbs and A. Popolato (University of California, Berkeley, 1980), p. 397.
45.
V. M. Boyle, R. L. Jameson, and M. Sultanoff, in Fourth Symposium (International) on Detonation, ACR‐126 (Office of Naval Research, Washington, D.C., 1965), p. 241.
46.
W. J.
Carter
,
High Temp. High Press.
5
,
313
(
1973
).
47.
A. W. Campbell and R. Engelke, in Sixth Symposium (International) on Detonation, ACR‐221 (Office of Naval Research, Coronado, CA., 1976), p. 642.
48.
E. L. Lee, Lawrence Livermore National Laboratory (private communication).
49.
W. C. Davis and J. B. Ramsey, in Seventh Symposium (International) on Detonation, NSWC MP 82–334 (Naval Surface Weapons Center, Annapolis, MD., 1981), p. 531.
50.
J. W. Kury, H. C. Hornig, E. L. Lee, J. L. McDonnel, D. L. Ornellas, M. Finger, F. M. Strange, and M. L. Wilkins, in Fourth Symposium (International) on Detonation, ACR‐126 (Office of Naval Research, Washington, D.C., 1965), p. 3.
51.
G. I.
Kanel
and
A. N.
Dremin
,
Combust. Explos. Shock Waves (USSR)
13
,
71
(
1977
);
G. I.
Kanel
and
A. N.
Dremin
,
14
,
92
(
1978
).
52.
P. L. Stanton, E. A. Igel, L. M. Lee, J. M. Mohler, and G. T. West, in Seventh Symposium (International) on Detonation, NSWC MP 82–334 (Naval Surface Weapons Center, Annapolis, MD., 1981), p. 865.
53.
S. A. Sheffield, D. E. Mitchell, and D. B. Hayes, in Sixth Symposium (International) on Detonation, ACR‐221 (Office of Naval Research, Coronado, CA., 1976), p. 748.
54.
G. I.
Taylor
,
Proc. R. Soc. London Ser. A
101
,
192
(
1950
).
55.
L. V. Al’tshuler, V. K. Ashaev, G. S. Doronin, A. D. Levin, O. N. Mironov, and A. S. Obukhov, Papers of the Sixth All‐Union Symposium on Combustion and Explosion (USSR), 1980, p. 8.
This content is only available via PDF.
You do not currently have access to this content.