Measurements of sodium and OH concentrations in ten oxygen‐rich H2/O2/N2 flames by respective saturated and low‐power laser‐induced fluorescence techniques have led to a much improved understanding of the complex flame chemistry of sodium in such oxygen‐rich media. Previous interpretations have been shown to be largely incomplete or in error. The one‐dimensional flame downstream profiles indicate that the amount of free sodium approximately tracks the decay of H atom and as the flame radicals decay sodium becomes increasingly bound in a molecular form. A detailed kinetic model indicates that the sodium is distributed between NaOH, which is dominant, and NaO2. Concentrations of NaO are very small and NaH negligible. The actual distribution is controlled by the temperature, the oxygen concentration, and the degree of nonequilibration of the flames’ basic free radicals. Na, NaO, NaO2, and NaOH are all coupled to one another by fast reactions which can rapidly interconvert one to another as flame conditions vary. NaO2 plays an indispensable role in providing alternate efficient channels by which NaOH can be produced. Its contribution becomes increasingly important at lower temperatures where the flux through the NaO2 intermediate becomes dominant over that for the direct reaction between Na and H2O. As a consequence, the ratio of NaOH to Na can become enhanced by up to two orders of magnitude at lower temperatures over what might have been expected from the Na+H2O direct reaction alone. The dissociation energy D°0(Na–O2) is established to be 39±5 kcal mol1 and the value of the rate constant for the Na+O2+M reaction of 2×10−28 T−1 cm6 molecule−2 s−1 for the flame gases. The sodium distribution within the highest temperature, low‐O2 flame, in which NaOH is dominant and equilibrated, supports a value of D°0(Na–OH) of 78.9±2 kcal mol−1. The rate constants for several reactions of Na, NaOH, NaO2, and NaO with flame species have been established approximately. An analysis of the total kinetic scheme shows that the chemical fluxes are carried predominantly by four reactions only. These considered alone, reproduce the data surprisingly well. An analysis of the implications of the corresponding large rate constants for the termolecular reaction of the other alkali metals with oxygen suggests that these will undoubtedly show to varying degrees similar behavior to sodium. Values for the bond dissociation energies of the other alkali dioxides are discussed. It appears that in practical combustion systems, even at low temperatures, the conversion of alkali metals to the corresponding hydroxide will not be kinetically constrained and its concentration will be at or in excess of the expected equilibrium value.

1.
C. G.
James
and
T. M.
Sugden
,
Proc. R. Soc. London Ser. A
227
,
312
(
1955
).
2.
D. E.
Jensen
and
P. J.
Padley
,
Trans. Faraday Soc.
62
,
2132
(
1966
).
3.
C. Th. J. Alkemade, Tj. Hollander, W. Snelleman, and P. J. Th. Zeegers, Metal Vapors in Flames (Pergamon, Oxford, 1982).
4.
W. E.
Kaskan
,
Symp. (Int.) on Combustion
10
,
41
(
1965
).
5.
M. J.
McEwan
and
L. F.
Phillips
,
Trans. Faraday Soc.
62
,
1717
(
1966
).
6.
M. J.
McEwan
and
L. F.
Phillips
,
Combust. Flame
9
,
420
(
1965
);
11
,
63
(
1967
).,
Combust. Flame
7.
G. J.
Dougherty
,
M. J.
McEwan
, and
L. F.
Phillips
,
Combust. Flame
21
,
253
(
1973
).
8.
R.
Carabetta
and
W. E.
Kaskan
,
J. Phys. Chem.
72
,
2483
(
1968
).
9.
D.
Husain
and
J. M. C.
Plane
,
J. Chem. Soc. Faraday Trans. 2
78
,
163
(
1982
).
10.
F. Haber and H. Sachsse, Z. Phys. Chem., Bodenstein Festband 831 (1931).
11.
C. E. H.
Bawn
and
A. G.
Evans
,
Trans. Faraday Soc.
33
,
1580
(
1937
).
12.
S. D.
Kramer
,
B. E.
Lehmann
,
G. S.
Hurst
,
M. G.
Payne
, and
J. P.
Young
,
J. Chem. Phys.
76
,
3614
(
1982
).
13.
D.
Husain
and
J. M. C.
Plane
,
J. Chem. Soc. Faraday Trans. 2
78
,
1175
(
1982
).
14.
L. W.
Grossman
,
G. S.
Hurst
,
S. D.
Kramer
,
M. G.
Payne
, and
J. P.
Young
,
Chem. Phys. Lett.
50
,
207
(
1977
).
15.
D. E.
Jensen
and
G. A.
Jones
,
J. Chem. Soc. Faraday Trans. 1
78
,
2843
(
1982
).
16.
D. E.
Jensen
,
J. Chem. Soc. Faraday Trans. 1
78
,
2835
(
1982
).
17.
C. H.
Muller
III
,
K.
Schofield
,
M.
Steinberg
, and
H. P.
Broida
,
Symp. (Int.) on Combustion
17
,
867
(
1979
).
18.
C. H.
Muller
III
,
K.
Schofield
, and
M.
Steinberg
,
J. Chem. Phys.
72
,
6620
(
1980
).
19.
P. J.
Padley
and
T. M.
Sugden
,
Proc. R. Soc. London Ser. A
248
,
248
(
1958
).
20.
M. B.
Denton
and
D. B.
Swartz
,
Rev. Sci. Instrum.
45
,
81
(
1974
).
21.
K.
Schofield
and
M.
Steinberg
,
Opt. Eng.
20
,
501
(
1981
).
22.
C. H.
Muller
III
,
K.
Schofield
, and
M.
Steinberg
,
Am. Chem. Soc. Symp. Ser.
134
,
103
(
1980
).
23.
D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed.,
Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.)
37
, (
1971
);
1974, 1975, 1978, 1982 supplements,
J. Phys. Chem. Ref. Data
3
,
311
(
1974
),
4
,
1
(
1975
), ,
J. Phys. Chem. Ref. Data
7
,
793
(
1978
), ,
J. Phys. Chem. Ref. Data
11
,
695
(
1982
).,
J. Phys. Chem. Ref. Data
24.
R.
Kelly
and
P. J.
Padley
,
Trans. Faraday Soc.
67
,
740
(
1971
).
25.
D. L.
Hildenbrand
and
E.
Murad
,
J. Chem. Phys.
53
,
3403
(
1970
).
26.
U. C.
Sridharan
,
L. X.
Qiu
, and
F.
Kaufman
,
J. Phys. Chem.
86
,
4569
(
1982
).
27.
L.
Andrews
,
J. Phys. Chem.
73
,
3922
(
1969
).
28.
R. R.
Smardzewski
and
L.
Andrews
,
J. Chem. Phys.
57
,
1327
(
1972
).
29.
M. H.
Alexander
,
J. Chem. Phys.
69
,
3502
(
1978
).
30.
H.
Johnston
and
J.
Birks
,
Acc. Chem. Res.
5
,
327
(
1972
).
31.
J. Troe and H. Gg. Wagner, in Physical Chemistry of Fast Reactions, edited by B. P. Levitt (Plenum, New York, 1973), Vol. 1, Chap. 1, pp. 1–80.
32.
D. L. Baulch, D. D. Drysdale, D. G. Home, and A. C. Lloyd, Evaluated Kinetic Data for High Temperature Reactions. Volume 1. Homogeneous Gas Phase Reactions of the H2O2 System (Butterworths, London, 1972).
33.
D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions. Volume 3. Homogeneous Gas Phase Reactions of the O2O3 System, the COO2H2 System, and of Sulfur‐Containing Species (Butterworths, London, 1976).
34.
G.
Dixon‐Lewis
,
Philos. Trans. R. Soc. London Sect. A
292
,
45
(
1979
).
35.
D. M.
Golden
,
F. P.
Del Greco
, and
F.
Kaufman
,
J. Chem. Phys.
39
,
3034
(
1963
).
36.
C. C.
Wang
and
C. M.
Huang
,
Phys. Rev. A
21
,
1235
(
1980
).
37.
D. E.
Jensen
,
G. A.
Jones
, and
A. C. H.
Mace
,
J. Chem. Soc. Faraday Trans. 1
75
,
2377
(
1979
).
38.
P. J. Th.
Zeegers
and
C. Th. J.
Alkemade
,
Combust. Flame
15
,
193
(
1970
).
39.
D. L.
Hildenbrand
,
J. Chem. Phys.
57
,
4556
(
1972
).
40.
T. C.
Ehlert
,
High Temp. Sci.
9
,
237
(
1977
).
41.
H. J.
Byker
,
I.
Eliezer
,
R. C.
Howald
, and
T. C.
Ehlert
,
High Temp. Sci.
11
,
153
(
1979
).
42.
A. V.
Gusarov
,
L. N.
Gorokhov
, and
A. G.
Efimova
,
High Temp. USSR
5
,
524
(
1967
).
43.
H.
Figger
,
W.
Schrepp
, and
X.
Zhu
,
J. Chem. Phys.
79
,
1320
(
1983
).
44.
G. J.
Dougherty
,
M. R.
Dunn
,
M. J.
McEwan
, and
L. F.
Phillips
,
Chem. Phys. Lett.
11
,
124
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.