Vibrational state distributions of the SF6+H, D→SF5 +HF(v=0–12), DF(v=0–17) ion–molecule reactions are investigated with the flowing afterglow‐infrared chemiluminescence technique. The nascent distribution for the hydrogen reaction is (0.00)v=1 : (0.17)v=2 : (0.30)v=3 : (0.24)v=4 : (0.13)v=5 : (0.11)v=6 : (0.05)v=7 and for the deuterium reaction is (0.00)v=1 : (0.06)v=2 : (0.11)v=3 : (0.14)v=4 : (0.14)v=5 : (0.23)v=6 : (0.15)v=7 : (0.08)v=8 : (0.09)v=9. The fractions of the available energy deposited into the HF and DF vibrations are 0.37 and 0.38, respectively. The distributions do not show the characteristics of a statistical distribution that might be expected if a long‐lived complex occurs in the reaction. Instead, the distributions show a moderate amount of vibrational excitation due to an initial attractive energy release. Since the fraction of the available energy deposited into the diatomic vibration correlates well with the attractive energy release in L+HH′ systems, a larger fraction of the energy is released as repulsion during S–F bond scission, favoring product translation and SF5 vibration. The collisions are most likely direct with negligible effects due to secondary encounters.

1.
V. M. Bierbaum, G. B. Ellison, and S. R. Leone, in Gas Phase Ion Chemistry, edited by M. T. Bowers (Academic, New York, 1984), Vol. 3.
2.
R. G.
Macdonald
and
J. J.
Sloan
,
Chem. Phys.
31
,
165
(
1978
).
3.
R. J.
Buss
and
Y. T.
Lee
,
J. Phys. Chem.
83
,
34
(
1979
).
4.
W. L. Hase, in Dynamics of Molecular Collisions, edited by W. H. Miller (Plenum, New York, 1976), Part B, p. 121.
5.
J. C. Polanyi and J. L. Schreiber, in Physical Chemistry, An Advanced Treatise, edited by W. Jost (Academic, New York, 1974), Vol. VI A, Chap. 6.
6.
P. J. Kuntz, in Dynamics of Molecular Collisions, edited by W. H. Miller (Plenum, New York, 1976), Part B, p. 53.
7.
C. J.
Howard
,
F. C.
Fehsenfeld
, and
M.
McFarland
,
J. Chem. Phys.
60
,
5086
(
1974
).
8.
P. J.
Hay
,
J. Chem. Phys.
76
,
502
(
1982
).
9.
P. S.
Drzaic
and
J. I.
Brauman
,
J. Am. Chem. Soc.
104
,
13
(
1982
).
10.
S. P.
Heneghan
and
S. W.
Benson
,
Int. J. Chem. Kinet.
15
,
109
(
1983
).
11.
G. E.
Streit
,
J. Chem. Phys.
77
,
826
(
1982
).
12.
C.
Lifshitz
,
J. Phys. Chem.
87
,
3474
(
1983
).
13.
L. M.
Babcock
and
G. E.
Streit
,
J. Chem. Phys.
75
,
3864
(
1981
).
14.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules(Vran Nostrand Reinhold, New York, 1979).
15.
T.
Kiang
and
R. N.
Zare
,
J. Am. Chem. Soc.
102
,
4024
(
1980
).
16.
L. M.
Babcock
and
G. E.
Streit
,
J. Chem. Phys.
74
,
5700
(
1981
).
17.
D. E.
Mann
,
B. A.
Thrush
,
D. R.
Lide
, Jr.
,
J. J.
Ball
, and
N.
Acquista
,
J. Chem. Phys.
34
,
420
(
1961
).
18.
R. M.
Talley
,
H. M.
Kaylor
, and
A. H.
Nielsen
,
Phys. Rev.
77
,
529
(
1950
).
19.
J. C.
Weisshaar
,
T. S.
Zwier
, and
S. R.
Leone
,
J. Chem. Phys.
75
,
4873
(
1981
).
20.
D. W.
Trainor
,
D. O.
Ham
, and
F.
Kaufman
,
J. Chem. Phys.
58
,
4599
(
1973
).
21.
T. S.
Zwier
,
J. C.
Weisshaar
, and
S. R.
Leone
,
J. Chem. Phys.
75
,
4885
(
1981
).
22.
M. A.
Smith
and
S. R.
Leone
,
J. Chem. Phys.
78
,
1325
(
1983
).
23.
F. C.
Fehsenfeld
,
J. Chem. Phys.
53
,
2000
(
1970
).
24.
B. H.
Mahan
and
C. E.
Young
,
J. Chem. Phys.
44
,
2192
(
1966
).
25.
F. C.
Fehsenfeld
,
C. J.
Howard
, and
E. E.
Ferguson
,
J. Chem. Phys.
58
,
5841
(
1973
).
26.
D. R.
Stull
and
H.
Prophet
, JANAF Thermochemical Tables, 2nd ed.,
Natl. Stand. Ref. Data Ser., Nat. Bur. Stand. (U. S.)
37
, (
1971
).
27.
J. L.
Franklin
,
J. G.
Dillard
,
H. M.
Rosenstock
,
J. T.
Herron
, and
K.
Draxl
,
Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U. S.)
26
, (
1969
).
28.
M. A.
Smith
,
V. M.
Bierbaum
, and
S. R.
Leone
,
Chem. Phys. Lett.
94
,
398
(
1983
).
29.
S. R.
Leone
,
J. Phys. Chem. Ref. Data
11
,
953
(
1982
).
30.
Rotationless moments and Einstein A coefficients calculated by D. W. Setser using RKR potentials for HF, DF as well as the dipole moment function of
R. N.
Sileo
and
T. A.
Cool
,
J. Chem. Phys.
65
,
117
(
1976
). Representative Einstein A coefficients are those of the P(1) transition in each band. The HF coefficients are A1.0 = 195 s−1,A2.1 = 333 s−1,A3.2 = 423 s−1,A4.3 = 470 s−1,A5.4 = 479 s−1,A6.5 = 457 s−1,A7.6 = 409 s−1. The DF Coeffieients are A1.0 = 55 s−1,A2.1 = 100 s−1,A3.2 = 134 s−1,A4.3 = 158 s−1,A5.4 = 173 s−1,A6.5 = 180 s−1,A7.6 = 179 s−1,A8.7 = 171 s−1,A9.8 = 157 s−1.
31.
L. S.
Dzelzkalns
and
F.
Kaufman
,
J. Chem. Phys.
77
,
3508
(
1982
).
32.
J. F.
Bott
and
R. F.
Heidner
III
,
J. Chem. Phys.
66
,
2878
(
1977
).
33.
S. S.
Fried
,
J.
Wilson
, and
R. L.
Taylor
,
IEEE J. Quantum Electron.
9
,
59
(
1973
).
34.
P. R.
Poole
and
I. W. M.
Smith
,
J. Chem. Soc. Faraday Trans. 2
73
,
1447
(
1977
).
35.
R. F.
Heidner
III
and
J. F.
Bott
,
Ber. Bunsenges. Phys. Chem.
81
,
128
(
1977
).
36.
G. Z.
Whitten
and
B. S.
Rabinovitch
,
J. Chem. Phys.
38
,
2466
(
1963
).
37.
K. O.
Christe
,
E. C.
Curtis
,
C. J.
Schack
, and
D.
Pilipovich
,
Inorg. Chem.
11
,
1679
(
1972
).
38.
J. P.
Sung
,
D. W.
Setser
, and
H.
Heydtmann
,
Ber. Bunsenges. Phys. Chem.
83
,
1272
(
1979
).
39.
R. J.
Malins
and
D. W.
Setser
,
J. Chem. Phys.
73
,
5666
(
1980
).
40.
D. W. Setser (private communication).
41.
M. A. Wickramaaratchi, D. W. Setser, B. Hildebrandt, B. Korbitzer, and H. Heydtmann, Chem. Phys. (in press).
42.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
43.
H.
Hotop
and
W. C.
Lineberger
,
J. Phys. Chem. Ref. Data
4
,
539
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.