sd interconfigurational energies, s‐spin flip energies, and ionization potentials for atoms in the first transition series are calculated within a local‐spin‐density scheme, where the exchange is treated exactly. The results so obtained are in better agreement with experiments than those obtained by the Hartree–Fock (HF) or local‐spin‐density approximations (LSDA), while they are of the same quality as those obtained by the self‐interaction‐corrected (SIC) version of the LSDA. The merits of the proposed scheme with respect to the other mentioned approximations are discussed in detail.

1.
For a review, see W. Kohn and P. Vashista, in Theory of the Inhomogeneous Electron Gas, edited by N. H. March and S. Lundqvist (Plenum, New York, 1983).
2.
For a review, see A. R. Williams and U. von Barth, in Theory of the Inhomogeneous Electron Gas, edited by N. H. March and S. Lundqvist (Plenum, New York, 1983).
3.
See, for instance, (a)
O.
Gunnarsson
and
B. J.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
);
(b)
O.
Gunnarsson
,
J.
Harris
, and
R. O.
Jones
,
J. Chem. Phys.
67
,
3970
(
1977
);
(c)
J.
Harris
and
R. O.
Jones
,
J. Chem. Phys.
68
,
1190
(
1978
), ,
J. Chem. Phys.
(d)
J.
Harris
and
R. O.
Jones
,
70
,
830
(
1979
); ,
J. Chem. Phys.
(e)
O.
Gunnarsson
and
R. O.
Jones
,
Phys. Scr.
21
,
394
(
1980
);
(f)
J. L.
Martins
,
R.
Car
, and
J.
Buttet
,
J. Chem. Phys.
78
,
5646
(
1983
).
4.
S.
Baroni
and
E.
Tuncel
,
J. Chem. Phys.
79
,
6140
(
1983
).
5.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
6.
O.
Gunnarsson
and
R. O.
Jones
,
Solid State Commun.
37
,
249
(
1981
).
7.
(a)
J. G.
Harrison
,
J. Chem. Phys.
78
,
4562
(
1983
);
(b)
J. G.
Harrison
,
79
,
2265
(
1983
).,
J. Chem. Phys.
8.
See also:
H.
Stoll
,
C. M. E.
Pavlidou
, and
H.
Preuss
,
Theor. Chim. Acta
,
49
,
143
(
1978
);
H.
Stoll
,
E.
Golka
, and
H.
Preuss
,
Theor. Chim. Acta
55
,
29
(
1980
); ,
Theor. Chim. Acta
S. H.
Vosko
and
L.
Wilk
,
J. Phys. B
16
,
3687
(
1983
).
9.
M. M.
Goodgame
and
W. A.
Goddard
III
,
Phys. Rev. Lett.
48
,
135
(
1982
).
10.
B.
Dalley
,
A. J.
Freeman
, and
D. E.
Ellis
,
Phys. Rev. Lett.
50
,
488
(
1983
);
J.
Bernholc
and
N. A. W.
Holzwarth
,
Phys. Rev. Lett.
50
,
1451
(
1983
).,
Phys. Rev. Lett.
11.
J.
Harris
and
R. O.
Jones
,
J. Chem. Phys.
68
,
3316
(
1978
).
12.
O.
Gunnarsson
and
R. O.
Jones
,
J. Chem. Phys.
72
,
5357
(
1980
).
13.
The expression “average self‐interaction of the nl shell” indicates the quantity [1/(2l+1)]ΣmSIC(nlm), where SIC(nlm) is the self‐interaction of the (nlm) orbital.
14.
In the case of Co, for instance, the 4s and average 3d self‐interactions are −0.05 and −0.06 eV, respectively. The m = 0,m = ±1, and m = ±2 contributions to the average 3d self‐interaction are 0.59, −0.11, and −0.34 eV, respectively. The 3d self‐interaction using a sphericalized orbital density is −1.03 eV.
15.
C.
Froese Fischer
,
Comput. Phys. Commun.
14
,
145
(
1978
).
16.
E.
Clementi
and
C.
Roetti
,
At. Data Nucl. Data Tables
43
,
261
(
1977
).
17.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
18.
T.
Zeigler
and
A.
Rauk
,
Theor. Chim. Acta.
43
,
261
(
1977
);
U.
von Barth
,
Phys. Rev. A
20
,
1693
(
1979
).
19.
C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. Spec. Publ. No. 476 (U.S. GPO, Washington, D.C., 1971).
20.
(a)
E.
Clementi
,
J. Chem. Phys.
38
,
2248
(
1963
);
(b)
E.
Clementi
,
39
,
175
(
1963
); ,
J. Chem. Phys.
(c)
E.
Clementi
,
42
,
2783
(
1965
).,
J. Chem. Phys.
21.
U.
von Barth
and
L.
Hedin
,
J. Phys. C
5
,
1629
(
1972
).
22.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.