Relative values of the nonresonant third order electric susceptibilities of various gases have been measured by nonlinear optical mixing at 532 and 683 nm. These results have been converted to absolute values by scaling them to the vibrationally resonant susceptibility of H2 which has been calculated from recent Raman cross section and linewidth data. Comparisons are offered with nonresonant electronic susceptibilities by other methods.

1.
Nonlinear Raman Spectroscopy and Its Chemical Applications edited by W. Kiefer and D. A. Long (Reidel, Boston, 1982).
2.
S. A. J.
Druet
and
J. P.
Taran
,
Prog. Quantum. Electron.
7
,
1
(
1981
).
3.
Chemical Applications of Nonlinear Raman Spectroscopy, edited by A. B. Harvey (Academic, New York, 1981).
4.
D. C. Hanna, M. A. Yuratich, and D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer, Berlin, 1979).
5.
J. W. Nibler and G. V. Knighten, in Topics in Current Physics, edited by A. Weber (Springer, Berlin, 1979), Chap. 7. The χ expressions given here [Eqs. (7.61)‐(7‐64)] are in error and must be divided by 2.
6.
W. G.
Rado
,
Appl. Phys. Lett.
11
,
123
(
1967
).
7.
G.
Hauchecome
,
F.
Kerherve
, and
G.
Mayer
,
J. Phys. (Paris)
32
,
47
(
1971
).
8.
A. C.
Eckbreth
and
R. J.
Hall
,
Comb. Sci. Tech.
25
,
175
(
1982
).
9.
P.
Huber‐Waelchli
and
J. W.
Nibler
,
J. Chem. Phys.
76
,
273
(
1982
).
10.
J. F.
Ward
and
G. H. C.
New
,
Phys. Rev.
185
,
57
(
1969
);
see also
B. J.
Orr
and
J. F.
Ward
,
Mol. Phys.
20
,
513
(
1971
).
11.
The mixing resulting from this process has been termed variously four wave mixing (FWM) since χ involves four frequency arguments or three wave mixing (TWM) when as here, only three frequencies are unique. Current usage favors the former choice so it has been adopted in this paper.
12.
M.
Maier
,
W.
Kaiser
, and
J. A.
Giordmaine
,
Phys. Rev.
177
,
580
(
1969
);
M.
Maier
,
Appl. Phys.
11
,
209
(
1976
).
13.
H. W. Klockner and H. W. Schrotter, in Topics in Current Physics, edited by A. Weber (Springer, Berlin, 1979).
14.
W. M.
Huo
and
R. L.
Jaffe
,
Phys. Rev. Lett.
47
,
30
(
1981
).
15.
D. M.
Golden
and
B.
Crawford
, Jr.
,
J. Chem. Phys.
36
,
1654
(
1962
).
16.
W. F.
Murphy
,
W.
Holzer
, and
H. J.
Bernstein
,
Appl. Spectrosc.
23
,
211
(
1969
).
17.
A.
Owyoung
,
Opt. Lett.
2
,
91
(
1978
).
18.
M. P.
Bogaard
and
B. J.
Orr
,
Int. Rev. Sci. Phys. Chem. Ser. 2
2
,
149
(
1975
).
19.
R. S.
Finn
and
J. F.
Ward
,
Phys. Rev. Lett.
26
,
285
(
1971
).
20.
J. F.
Ward
and
C. K.
Miller
,
Phys. Rev. A
19
,
826
(
1979
).
21.
C. K.
Miller
and
J. F.
Ward
,
Phys. Rev. A
16
,
1179
(
1977
).
22.
A. D.
Buckingham
and
D. A.
Dunmur
,
Trans. Faraday Soc.
64
,
1776
(
1968
).
23.
A. D.
Buckingham
and
B. J.
Orr
,
Proc. R. Soc. London Ser. A
305
,
259
(
1968
).
24.
A. D.
Buckingham
,
M. P.
Bogaard
,
D. A.
Dunmur
,
C. P.
Hobbs
, and
B. J.
Orr
,
Trans. Faraday Soc.
66
,
1548
(
1970
).
25.
P.
Sitz
and
R.
Yaris
,
J. Chem. Phys.
49
,
3546
(
1968
).
26.
J. F.
Ward
and
I. J.
Bigio
,
Phys. Rev. A
11
,
60
(
1975
).
27.
J. F.
Ward
and
D. S.
Elliot
,
J. Chem. Phys.
69
,
5438
(
1978
).
28.
A. D.
Buckingham
and
B. J.
Orr
,
Trans. Faraday Soc.
65
,
673
(
1969
).
29.
A. D.
Buckingham
,
M. P.
Bogaard
,
D. A.
Dunmuir
,
C. P.
Hobbs
, and
B. J.
Orr
,
Trans. Faraday Soc.
66
,
1548
(
1970
).
30.
F.
DeMartini
,
F.
Simoni
, and
E.
Santamato
,
Opt. Commun.
9
,
176
(
1973
).
31.
R. W.
Terhune
and
C. W.
Peters
,
J. Mol. Spectrosc.
3
,
138
(
1959
).
32.
M. F.
Crawford
and
R. E.
MacDonald
,
Can. J. Phys.
98
,
1022
(
1958
).
33.
C. H. Church, Tech. Rep. University of Michigan, 1959.
34.
R. H.
Hunt
,
W. L.
Barnes
, and
P. J.
Brannon
,
Phys. Rev. A
1
,
1570
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.