The escape of a particle from a potential well is treated using a generalized Langevin equation (GLE) in the low friction limit. The friction is represented by a memory kernel and the random noise is characterized by a finite correlation time. This non‐Markovian stochastic equation is reduced to a Smoluchowski diffusion equation for the action variable of the particle and explicit expressions are obtained for the drift and diffusion terms in this equation in terms of the Fourier coefficients of the deterministic trajectory (associated with the motion without coupling to the heat bath) and of the Fourier transform of the friction kernel. The latter (frequency dependent friction) determines the rate of energy exchange with the heat bath. The resulting energy (or action) diffusion equation is used to determine the rate of achieving the critical (escape) energy. Explicit expressions are obtained for a Morse potential. These results for the escape rate agree with those from stochastic trajectories based on the original GLE. Non‐Markovian effects are shown to have large effects on the rate of energy accumulation and relaxation within the well.

1.
H. A.
Kramers
,
Physica (Utrecht)
7
,
284
(
1940
).
2.
See, e. g.,
S. H.
Northrup
and
J. T.
Hynes
,
J. Chem. Phys.
68
,
3203
(
1978
);
S. H.
Northrup
and
J. T.
Hynes
,
69
,
5246
(
1978
); ,
J. Chem. Phys.
K.
Schulten
,
Z.
Schulten
, and
A.
Szabo
,
J. Chem. Phys.
74
,
4426
(
1981
). See also Refs. 7, 8, and D. Chandler in Ref. 6.,
J. Chem. Phys.
3.
See, e.g.,
C.
Caroli
,
R.
Roulett
, and
D.
Saint‐James
,
Phys. Rev. B
18
,
545
(
1978
). See also Ref. 12 and references therein.
4.
For a review see
W.
Dieterich
,
F.
Fulde
, and
I.
Peschel
,
Adv. Phys.
29
,
527
(
1980
).
5.
E. Ben‐Jacob, D. J. Bergman, and Z. Schuss, Phys. Rev. B (in press).
6.
J. C.
Keck
,
Discuss. Faraday Soc.
33
,
173
(
1962
);
E. K.
Grimmelman
,
J. C.
Tully
, and
E.
Helfand
,
J. Chem. Phys.
74
,
5300
(
1981
);
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
); ,
J. Chem. Phys.
J. C.
Tully
,
Surf. Sci.
111
,
461
(
1981
);
G.
Iche
and
Ph.
Nozieres
,
J. Phys. (Paris)
37
,
1313
(
1976
).
7.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
74
,
4465
(
1981
).
8.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
69
,
2143
(
1978
).
9.
J. L.
Skinner
and
P. G.
Wolnes
,
J. Chem. Phys.
69
,
2143
(
1978
).
10.
Z. Schuss, Theory and Applications of Stochastic Differential Equations (Wiley, New York, 1980).
11.
B.
Carmeli
and
A.
Nitzan
,
Phys. Rev. Lett.
49
,
423
(
1982
).
12.
B. Carmeli and A. Nitzan, Isr. J. Chem. (in press).
13.
See, e. g.,
E. W.
Montroll
and
K. E.
Shuler
,
Adv. Chem. Phys.
1
,
361
(
1958
).
14.
J. C.
Tully
,
J. Chem. Phys.
73
,
1957
(
1980
) and in Ref. 6;
S.
Jacobson
,
M. A.
Ratner
, and
A.
Nitzan
,
J. Chem. Phys.
73
,
3712
(
1980
); ,
J. Chem. Phys.
J. A.
Montgomery
,Jr.
and
D.
Chandler
,
J. Chem. Phys.
70
,
4056
(
1979
); ,
J. Chem. Phys.
Phys. Rev. B
23
,
1980
(
1981
).
15.
R.
Zwanzig
,
Phys. Fluids
2
,
12
(
1959
).
16.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
77
,
3736
(
1982
).
17.
M.
Lax
,
Rev. Mod. Phys.
38
,
541
(
1966
).
18.
Equation (21) results from the latter relation may be obtained from using Eqs. 18.
19.
See, e. g.,
A.
Nitzan
and
R.
Silbey
,
J. Chem. Phys.
60
,
4070
(
1974
).
20.
G. H.
Weiss
,
Adv. Chem. Phys.
13
,
1
(
1966
).
21.
It may be thought that the result Eq. (76) should be multiplied by 12, since half the trajectories which start at the critical energy EB are expected to go down in energy rather than up and out of the well. However, the flux related to τMFP(J,JB) includes only such trajectories that cross EB with Ė >0. Therefore, Eq. (76) is valid if we assume that all trajectories with E> EB exit out of the well, i.e., that the exit probability f (defined in Sec. I) is unity.
This content is only available via PDF.
You do not currently have access to this content.