A systematic and analytic treatment of the recombination probability for a pair of ions in the presence of a homogeneously distributed scavenger is presented. Results for both low and high scavenger concentrations are given for different ranges of the initial separations of the two ions. The low‐density expansion corrects some previously published results, while the recombination probability for large scavenger densities is derived for the first time. Approximations, uniformly valid for all initial distances, are constructed and shown to be in excellent agreement with numerical results.

1.
P.
Debye
and
J. O.
Edwards
,
J. Chem. Phys.
20
,
236
(
1952
);
R. M.
Noyes
,
J. Am. Chem. Soc.
78
,
5486
(
1956
).
2.
L.
Monchick
,
J. Chem. Phys.
24
,
381
(
1956
).
3.
See, e.g.,
Z.
Schulten
and
K.
Schulten
,
J. Chem. Phys.
66
,
4616
(
1977
);
H. J.
Werner
,
Z.
Schulten
, and
K.
Schulten
,
J. Chem. Phys.
67
,
646
(
1977
); ,
J. Chem. Phys.
S. J.
Rzad
and
G.
Bakale
,
J. Chem. Phys.
59
,
2768
(
1978
).,
J. Chem. Phys.
4.
J. L.
Magee
and
A. B.
Tayler
,
J. Chem. Phys.
56
,
3061
(
1972
).
5.
F.
Collins
and
G.
Kimball
,
J. Colloid. Soc.
4
,
425
(
1949
);
H. L.
Frisch
and
F.
Collins
,
J. Chem. Phys.
20
,
1797
(
1952
).
For a discussion on the kinetic interpretation and validity of the different boundary conditions, see
F. C.
Collins
,
J. Colloid. Sci.
5
,
499
(
1950
);
K.
Razi Naqvi
,
K. J.
Mork
, and
S.
Waldenström
,
J. Phys. Chem.
84
,
1315
(
1980
).
6.
L.
Onsager
,
Phys. Rev.
54
,
554
(
1938
).
7.
K.
Razi Naqvi
,
S.
Waldenström
, and
K. J.
Mork
,
J. Chem. Phys.
71
,
73
(
1979
).
8.
M.
Tachiya
,
J. Chem. Phys.
70
,
238
(
1979
).
The absorption boundary condition is assumed in Tachiya’s derivation. When the radiation boundary condition is necessary, the treatment must be considerably modified. See
H.
Sano
and
M.
Tachiya
,
J. Chem. Phys.
71
,
1276
(
1979
);
Yu. A.
Berlin
,
P.
Cordier
, and
J. A.
Delaire
,
J. Chem. Phys.
73
,
4619
(
1980
); ,
J. Chem. Phys.
J. B.
Pedersen
,
J. Chem. Phys.
72
,
390
(
1980
); ,
J. Chem. Phys.
and, in particular, for a critical discussion, Ref. 7 and
S.
Waldenström
,
K.
Razi Naqvi
, and
K. J.
Mork
,
J. Chem. Phys.
74
,
6535
(
1981
).
9.
K. M.
Hong
and
J.
Noolandi
,
J. Chem. Phys.
69
,
5026
(
1978
).
10.
Some special interaction potentials may permit exact solutions (see Ref. 7).
11.
See, e.g., J. D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell, Waltham, 1968).
12.
Tachiya (Ref. 8) denotes these functions by K2(x) and J2(x), respectively.
13.
I. S. Gradshteyn and I. M. Ryzik, Table of Integrals, Series, and Products (Academic, New York, 1965).
14.
M.
Battezzati
and
A.
Perico
,
J. Chem. Phys.
75
,
886
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.