Electrohydrodynamic instabilities in the nematic phase of Merck ’’Phase V’’ with oblique boundary conditions were optically observed with a polarizing microscope in 25–100 μm ’’sandwich’’ cells. Oblique anchoring of the nematic was achieved by oblique evaporation of SiO on the plates. Two types of cells were used having the respective in‐plane projection of the direction of evaporation on the two plates either parallel (p‐type cells), or antiparallel (a‐type cells). The low voltage dc instability observed for the p‐type cells forms in an almost regular hexagonal pattern. By gradually increasing the voltage, the dc instability observed for the a‐type cells forms at first as flows which originate at order disturbances created at imperfections in the SiO coating. Voltage increase causes these flows to detach themselves from the places of the imperfections and move solitarily. The moving flows are associated with what appears to be moving tilt inversion deformations (of splay‐bend type) extending from the central part of the flow to some distance from it. When the voltage is further increased, a repeated process of replication of the flows, occurring on the associated tilt inversion deformations, leads to the creation of a periodic grid of moving flows. Other observed types of static and dynamic patterns under ac and dc excitation are reported, in particular: different types of cross rolls (ac conduction regime); variations of a pattern of what appears to be walls associated with flows, exhibiting an approximate wave number dependence on the electric field kE; a striped pattern associated with what appears to be twist walls and the propagating interference patterns associated with their oscillations; a toroidal flow (sometimes associated with closed inversion walls) which creates and caries along closed nematic threads (dc regime); a polygonal grid of turbulent flows (dc regime); a flow pattern correlated with the movement of the moving chevron pattern; a cellular fast turn‐off pattern related to the chevron pattern. This cellular pattern appears at first as moving snakelike regions in the chevron pattern which are bordered by disclination lines. Some features of dark, spotlike figures appearing on the chevron pattern are described. Preliminary interpretations of some of the observations are offered.

1.
R.
Williams
,
J. Chem. Phys.
39
,
384
(
1963
).
2.
A good review which summarizes basic theory and experiment of EHD’s in liquid crystals and other phenomena related to our study, T. J. Scheffer and H. C. Grüler, in Molecular Electro‐optics, edited by C. T. O’Konski(Dekker, New York and Basel, 1978), Part 2, Chap. 22.
3.
W.
Helfrich
,
J. Chem. Phys.
51
,
4092
(
1969
);
W.
Helfrich
,
52
,
4318
(
1970
).,
J. Chem. Phys.
4.
(a) Orsay Liquid Crystal Group,
Phys. Rev. Lett.
25
,
1642
(
1970
);
(b)
E.
Dubois‐Violette
,
P. G.
de Gennes
, and
O.
Parodi
,
J. Phys. (Paris)
32
,
305
(
1971
);
(c) Orsay Liquid Crystal Group,
Mol. Cryst. Liq. Cryst.
12
,
251
(
1971
).
5.
See, for example, (a)
P. A.
Penz
and
G. W.
Ford
,
Phys. Rev. A
6
,
414
,
1676
(
1972
);
(b)
T. O.
Carrol
,
J. Appl. Phys.
43
,
1342
(
1972
);
(c)
E.
Moritz
and
W.
Franklin
,
Mol. Cryst. Liq. Cryst.
40
,
229
(
1977
).
6.
(a)
N. J.
Felici
,
Rev. Gen. Electr.
78
,
717
(
1969
);
(a)
N. J.
Felici
,
J. Phys. (Paris)
,
37
,
C1
117
(
1976
).
7.
E. F.
Carr
,
Mol. Cryst. Liq. Cryst.
7
,
253
(
1969
).
8.
P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).
9.
G. H.
Heilmeier
and
W.
Helfrich
,
Appl. Phys. Lett.
16
,
155
(
1970
).
10.
(a)
M. I.
Barnik
,
L. M.
Blinov
,
M. F.
Grebenkin
, and
A. N.
Trufanov
,
Mol. Cryst. Liq. Cryst.
37
,
47
(
1976
);
(b)
M. I.
Barnik
,
L. M.
Blinov
,
S. A.
Pikin
, and
A. N.
Trufanov
,
Sov. Phys. JETP
45
,
396
(
1977
).
11.
E.
Guyon
,
P.
Pieranski
, and
M.
Boix
,
Lett. Appl. Eng. Sci.
1
,
19
(
1973
).
12.
(a)
S. A.
Pikin
,
V. G.
Chigrinov
, and
V. L.
Indenbom
,
Mol. Cryst. Liq. Cryst.
37
,
313
(
1976
);
(b)
S.
Pikin
,
G.
Ryschenkow
, and
W.
Urbach
,
J. Phys. (Paris)
37
,
241
(
1976
);
(c)
P.
Pieranski
,
E.
Guyon
, and
S. A.
Pikin
,
J. Phys. (Paris)
37
,
C1
3
(
1976
).,
J. Phys. (Paris)
13.
(a)
R. B.
Meyer
,
Phys. Rev. Lett.
22
,
918
(
1969
);
(b)
Yu. P.
Bobylev
and
S. A.
Pikin
,
Sov. Phys. JETP
45
,
195
(
1977
).
14.
(a)
L. K.
Vistin
,
Soviet Phys. Crystallogr.
15
,
514
,
908
(
1970
);
(b)
M. I.
Barnik
,
L. M.
Blinov
,
A. N.
Trufanov
, and
B. A.
Umanski
,
J. Phys. (Paris)
39
,
417
(
1978
);
Sov. Phys. JETP
46
,
1016
(
1977
).
15.
(a)
W.
Greubel
and
U.
Wolff
,
Appl. Phys. Lett.
19
,
213
(
1971
);
(b) P. K. Watson, J. M. Pollack, and J. B. Flan‐nery, in Liquid Crystals and Ordered Fluids, edited by J. F. Johnson and R. S. Porter (Plenum, New York, 1978), Vol. 3, p. 421.
16.
(a) E. F. Carr, in Liquid Crystals and Ordered Fluids III, edited by J. F. Johnson and R. S. Porter (Plenum, New York, 1978), p. 165;
(b)
E. J.
Sinclair
and
E. F.
Carr
,
Mol. Cryst. Liq. Cryst.
37
,
303
(
1976
);
(c)
E. F.
Carr
,
P. H.
Ackroyd
, and
J. K.
Newell
,
Mol. Cryst. Liq. Cryst.
43
,
93
(
1977
);
(d)
C. E.
Tarr
and
E. F.
Carr
,
Solid State Commun.
33
,
359
(
1980
).
17.
G. H.
Heilmeier
,
L. A.
Zanoni
, and
L. A.
Barton
,
Proc. IEEE
56
,
1162
(
1968
).
18.
(a)
W.
Urbach
,
M.
Boix
, and
E.
Guyon
,
Appl. Phys. Lett.
25
,
479
(
1974
);
(b)
D.
Armitage
,
J. Appl. Phys.
51
,
2552
(
1980
).
19.
P.
Andrew Penz
,
Phys. Rev. Lett.
24
,
1405
(
1970
);
P.
Andrew Penz
,
Mol. Cryst. Liq. Cryst.
15
,
141
(
1971
).
20.
(a) Direct observations of dust particle movement have confirmed that there is a flow pattern associated with the hexagonal pattern,
See, for example, E. L. Koschmieder: Benard Convection,
Adv. Chem. Phys.
26
,
141
(
1971
).
21.
D. Demus and L. Richter, Textures of Liquid Crystals, 2nded. (VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, 1980).
22.
(a)
W.
Helfrich
,
Phys. Rev. Lett.
21
,
1518
(
1968
);
(b)
A.
Stieb
,
G.
Baur
, and
G.
Meier
,
J. Phys. (Paris)
36
,
C1
185
(
1975
).
23.
(a)
F. H.
Busse
,
Rep. Progr. Phys.
41
,
1929
(
1978
);
(b)
F. H.
Busse
and
J. A.
Whitehead
,
J. Fluid Mech.
66
,
67
(
1974
);
(c)
F. H.
Busse
and
J. A.
Whitehead
,
47
,
305
(
1971
).,
J. Fluid Mech.
24.
Usually the rosettes will form in some regions of the samples, and not in others. We think that there must be a distinction between the parts of the sample showing at a certain voltage different dc modes (variable grating variant, turbulence, “rosettes”) since the same modes tend to form in the same regions of a sample each time it is tried under the same conditions. The regions showing different modes at high voltages, usually display the same low voltage (≲ 15 V) modes. Surface preparation differences are probably the main reason for the different high dc voltage modes. We suspect also that at these high voltages there are large scale xy plane flow patterns in our sealed samples which are preset by the geometry and defects and which could possibly play a role in creating regions showing different modes. In many of our samples “rosette” grids are (cf. text below) never formed.
25.
E.
Dubois‐Violette
,
E.
Guyon
, and
P.
Pieranski
,
Mol. Cryst. Liq. Cryst.
26
,
193
(
1973
).
26.
G.
Durand
,
M.
Veyssie
,
F.
Rondelez
, and
L.
Leger
,
C. R. Acad. Sci.
270
,
97
(
1970
).
27.
If our explanation is correct, the formation of the branches backwards with respect to the movement, together with the mentioned relation between the polarity of the plates and the direction of motion, implies that the injected charge is negative.
28.
The flow pattern might be similar to one of the above discussed dc low voltage α‐type cell flow figures with a toroidal distribution of loop flows inside the bright round curves of photograph 3 Plate 1 and loops (complete this time) out of it.
29.
P.
Atten
and
J. C.
Lacroix
,
J. Mec.
18
,
469
(
1979
).
30.
W. S.
Quon
and
E.
Wiener‐Avnear
,
Solid State Commun.
15
,
1761
(
1974
).
31.
P.
Maneville
,
Mol. Cryst. Liq. Cryst.
70
,
223
(
1981
).
32.
J. L.
Janning
,
Appl. Phys. Lett.
21
,
173
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.