Potential energy surfaces have been calculated for the four lowest electronic states of Na (3 2S, 3 2P)+H2(1Σ+g) by means of the RHF–SCF and PNO–CEPA methods. For the so‐called quenching process of Na (3 2P) by H2 at low initial translational energies (EVRT energy transfer) the energetically most favorable path occurs in C2v symmetry, since—at intermediate Na–H2 separation—the ? 2B2 potential energy surface is attractive. From the CEPA calculations, the crossing point of minimal energy between the ? 2A1 and ? 2B2 surfaces is obtained at Rc = 3.57 a.u. and rc = 2.17 a.u. with an energy difference to the asymptotic limit (R = ∞, r = re) of −0.06 eV. It is thus classically accessible without any initial translational energy, but at low initial translational energies (∼0.1 eV) quenching will be efficient only for arrangements of collision partners close to C2v symmetry. There is little indication of an avoiding crossing with an ionic intermediate correlating asymptotically with Na+ and H2 as was assumed in previous discussions of the quenching process. The dependence of the total quenching cross sections on the initial translational energy is discussed by means of the ’’absorbing sphere’’ model, taking the initial zero‐point vibrational energy of the hydrogen molecule into account. New experimental data of the product channel distribution in H2 for center‐of‐mass forward scattering are presented. The final vibrational states v′ = 3, 2, 1, and 0 of H2 are populated to about 26%, 61%, 13%, and 0%, respectively. The observed distributions in H2 (and D2) may be rationalized by simple dynamic considerations on the basis of the calculated surfaces.

1.
A. B.
Peterson
,
C.
Wittig
, and
S. R.
Leone
,
J. Appl. Phys.
47
,
1051
(
1976
).
2.
P. L. Lijnse, Report i 398, Fysish Laboratorium, Utrecht University, 1972.
3.
P. L. Lijnse, Ph.D. thesis, Utrecht, 1973.
4.
L.
Krause
,
Adv. Chem. Phys.
48
,
267
(
1975
).
5.
S.
Lemont
and
G. W.
Flynn
,
Ann. Rev. Phys. Chem.
28
,
261
(
1977
).
6.
R. G.
Shortridge
and
M. C.
Lin
,
J. Chem. Phys.
64
,
4070
(
1976
).
7.
D. S. Y.
Hsu
and
M. C.
Lin
,
Chem. Phys. Lett.
42
,
78
(
1976
).
8.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
Phys. Rev. Lett.
36
,
861
(
1976
).
9.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
Chem. Phys. Lett.
47
,
163
(
1977
).
10.
J. A.
Silver
,
N. C.
Blais
, and
G. H.
Kwei
,
J. Chem. Phys.
67
,
839
(
1977
).
11.
I. V. Hertel, Adv. Chem. Phys. (in press).
12.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
J. Chem. Phys.
71
,
674
(
1979
).
13.
J. A.
Silver
,
N. C.
Blais
, and
H.
Kwei
,
J. Chem. Phys.
71
,
3412
(
1979
).
14.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University, New York, 1954), App. VIII.
15.
H.‐J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5794
(
1981
).
16.
P.
McGuire
and
J. C.
Bellum
,
J. Chem. Phys.
71
,
1975
(
1979
).
17.
A.
Bjerre
and
E. E.
Nikitin
,
Chem. Phys. Lett.
1
,
179
(
1967
).
18.
E. E. Nikitin, in Proceedings of the 5th Nobel Symposium, edited by S. Claesson (Interscience, New York, 1967).
19.
E. Bauer, E. R. Fisher, and F. R. Gilmore, IDA Report P‐471, March, 1969.
20.
E.
Bauer
,
E. R.
Fisher
, and
F. R.
Gilmore
,
J. Chem. Phys.
51
,
4173
(
1969
).
21.
E. R.
Fisher
and
G. K.
Smith
,
Chem. Phys. Lett.
6
,
438
(
1970
);
E. R.
Fisher
and
G. K.
Smith
,
Appl. Opt.
10
,
1803
(
1971
);
E. R.
Fisher
and
G. K.
Smith
,
Chem. Phys. Lett.
13
,
448
(
1972
).
22.
J. R.
Barker
,
Chem. Phys.
18
,
175
(
1976
).
23.
See, e.g., J. Los, in The Physics of Electronic and Atomic Collisions, edited by J. Risley and R. Geballe (Seattle, 1975).
24.
G. J.
Schulz
,
Rev. Mod. Phys.
45
,
378
(
1973
).
25.
J. C.
Tully
,
J. Chem. Phys.
59
,
5122
(
1973
).
26.
J. C. Tully, in Modern Theoretical Chemistry, edited by W. H. Miller (Plenum, New York, 1976), Vol. 2.
27.
M.
Krauss
,
J. Res. Nat. Bur. Stand. A
72
,
553
(
1968
).
28.
K.
Mizutani
,
Y.
Kuribara
,
K.
Hayashi
, and
S.
Matsumoto
,
Bull. Chem. Soc. Japan
52
,
2184
(
1979
).
29.
P.
Habitz
,
Chem. Phys.
54
,
131
(
1980
).
30.
W. Meyer and P. Botschwina (unpublished results).
31.
B. O.
Roos
and
P.
Siegbahn
,
Theoret. Chim. Acta
17
,
209
(
1970
).
32.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
33.
D’Ans‐Lax, Taschenbuch für Chemiker und Physiker, edited by K. Schäfer and C. Synowietz (Springer, Berlin, 1970), Vol. 3.
34.
W.
Meyer
,
Int. J. Quantum Chem.
S5
,
341
(
1971
);
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
).
35.
W. Meyer, in Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. 3.
36.
R. K.
Nesbet
,
Phys. Rev. A
3
,
87
(
1971
).
37.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
41
,
3663
(
1964
).
38.
J. R.
Barker
and
R. E.
Weston
,
J. Chem. Phys.
65
,
1976
(
1427
).
39.
P. Botschwina (unpublished results).
40.
W. Reiland and I. V. Hertel, Phys. Rev. Lett. (to be published).
41.
J.
Elward‐Berry
and
M. J.
Berry
,
J. Chem. Phys.
72
,
4510
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.