Tunneling involves an allowed quantum event which fails to take place classically. Dynamical tunneling is the subset of such events which do not involve a classically insurmountable potential barrier. In this paper, we present unambiguous evidence for dynamical tunneling in bound state quantum systems.The tunneling occurs between two distinct regions of classically trapped quasiperiodic motion. Close analogies are shown to exist between this situation and ordinary barrier penetration in a double minimum potential. In the cases we study, tunneling occurs between equivalent or nearly equivalent local mode motions, which have arisen out of a resonance between the symmetric and nonsymmetric stretch.

1.
For reviews of studies of classical motion in nonseparable systems, see, for example, (a)
J.
Ford
,
Adv. Chem. Phys.
24
,
155
(
1973
)
(b)
M. V.
Berry
,
AIP Conf. Proc.
46
,
16
(
1978
).
2.
(a) S. A. Rice, in Advances in Laser Chemistry, edited by A. Zewail (Springer, New York, 1978);
(b) P. Brumer, Adv. Chem. Phys. (to be published);
(c) M. Tabor, ibid. (to be published);
(d)
M. V.
Berry
,
N. L.
Balazs
,
M.
Tabor
, and
A.
Voros
,
Ann. Phys. (NY)
122
,
26
(
1979
);
(e)
I. C.
Percival
,
Adv. Chem. Phys.
36
,
1
(
1977
).
3.
(a)
K. S. J.
Nordholm
and
S. A.
Rice
,
J. Chem. Phys.
61
,
203
(
1974
);
K. S. J.
Nordholm
and
S. A.
Rice
,
61
,
768
(
1974
); ,
J. Chem. Phys.
(b)
I. C.
Percival
,
J. Phys. A
7
,
794
(
1974
);
(c)
I. C.
Percival
and
N.
Pomphrey
,
J. Phys. B
31
,
97
(
1974
);
(d)
N.
Pomphrey
,
J. Phys. B
7
,
1909
(
1974
);
(e)
M. V.
Berry
,
J. Phys. A
10
,
2083
(
1977
);
(f)
E. J.
Heller
,
J. Chem. Phys.
72
,
1337
(
1980
);
(g)
D. W.
Noid
,
M. L.
Koszykowski
, and
R. A.
Marcus
,
Chem. Phys. Lett.
73
,
269
(
1980
).
4.
(a)
W.
Eastes
and
R. A.
Marcus
,
J. Chem. Phys.
61
,
4031
(
1974
);
(b)
D. W.
Noid
and
R. A.
Marcus
,
J. Chem. Phys.
62
,
2119
(
1975
); ,
J. Chem. Phys.
(c)
D. W.
Noid
and
R. A.
Marcus
,
J. Chem. Phys.
67
,
559
(
1977
); ,
J. Chem. Phys.
(d)
D. W.
Noid
,
M. L.
Koszykowski
, and
R. A.
Marcus
,
J. Chem. Phys.
71
,
2864
(
1979
); ,
J. Chem. Phys.
(e)
K. S.
Sorbie
and
N. C.
Handy
,
Mol. Phys.
32
,
1327
(
1976
);
(f)
K. S.
Sorbie
,
Mol. Phys.
32
,
1572
(
1976
); ,
Mol. Phys.
(g)
M. V.
Berry
and
M.
Tabor
,
Proc. R. Soc. London Ser. A
349
,
101
(
1976
).
5.
(a)
S.
Chapman
,
B.
Garrett
, and
W. H.
Miller
,
J. Chem. Phys.
64
,
502
(
1976
);
(b)
W. H.
Miller
,
J. Chem. Phys.
63
,
996
(
1975
); ,
J. Chem. Phys.
(c)
M. C.
Gutzwiller
,
J. Math. Phys.
12
,
343
(
1971
);
(d)
R. T.
Swimm
and
J. B.
Delos
,
J. Chem. Phys.
71
,
1706
(
1979
);
(e) C. Jaffe and W. P. Reinhardt, J. Chem. Phys. (to be published).
6.
E. J.
Heller
,
E. B.
Stechel
, and
M. J.
Davis
,
J. Chem. Phys.
73
,
4720
(
1980
).
7.
W. H.
Miller
and
T. F.
George
,
J. Chem. Phys.
56
,
5668
(
1972
);
T. F.
George
and
W. H.
Miller
,
J. Chem. Phys.
57
,
2458
(
1972
); ,
J. Chem. Phys.
W. H.
Miller
,
J. Chem. Phys.
83
,
960
(
1979
).,
J. Chem. Phys.
8.
R. T.
Lawton
and
M. S.
Child
,
Mol. Phys.
37
,
1799
(
1979
).
9.
R. T.
Lawton
and
M. S.
Child
,
Mol. Phys.
40
,
733
(
1980
).
10.
K. S.
Sorbie
and
J. N.
Murrell
,
Mol. Phys.
29
,
1387
(
1975
).
11.
See, for example, Problems in Quantum Mechanics, edited by D. ter Haar (Pion, London, 1975), p. 13.
12.
E. J.
Heller
and
M. J.
Davis
,
J. Phys. Chem.
85
,
307
(
1981
).
13.
M. J.
Davis
and
E. J.
Heller
,
J. Chem. Phys.
71
,
3383
(
1979
).
14.
R. A.
Harris
and
L.
Stobolsky
,
Phys. Lett. B
78
,
313
(
1978
).
15.
M. S.
Child
,
J. Mol. Spectrosc.
53
,
280
(
1974
).
16.
C.
Jaffe
and
P.
Brumer
,
J. Chem. Phys.
73
,
5646
(
1980
).
17.
J. S.
Hutchinson
and
R. E.
Wyatt
,
Chem. Phys. Lett.
72
,
378
(
1980
).
18.
This is known as Arnold diffusion; see, for example,
B. V.
Chirikov
,
Phys. Rep.
52
,
263
(
1979
).
19.
V. I. Arnold, in Mathematical Methods of Classical Mechanics (Springer, New York, 1978), Appendix 8.
This content is only available via PDF.
You do not currently have access to this content.