The electron photodetachment spectra for the enolate anions of acetaldehyde and acetaldehyde‐d3 have been measured using an ion cyclotron resonance spectrometer in conjunction with a tunable dye laser. Sharp resonances at threshold are observed for both anions, and are attributed to a low‐lying excited electronic state of the anion, which we relate to postulated ’’dipole‐supported’’ states of electron–polar molecule systems. The electron affinity of the neutral enolate radicals CH2CHO and CD2CDO are found to be 1.824±0.005 and 1.819±0.005 eV, respectively.

1.
A. H.
Zimmerman
and
J. I.
Brauman
,
J. Chem. Phys.
66
,
5823
(
1977
).
2.
R. L.
Jackson
,
A. H.
Zimmerman
, and
J. I.
Brauman
,
J. Chem. Phys.
71
,
2088
(
1979
).
3.
(a)
E.
Fermi
and
E.
Teller
,
Phys. Rev.
72
,
406
(
1947
):
For a review of the history of this problem see
J. E.
Turner
,
Am. J. Phys.
45
,
758
(
1977
);
(b)
S.
Altshuler
,
Phys. Rev.
107
,
114
(
1957
);
(c)
M. H.
Mittleman
and
R. E.
von Holdt
,
Phys. Rev.
140
,
726
(
1965
);
(d)
J.‐M.
Lévy‐Leblond
,
Phys. Rev.
153
,
1
(
1967
).
4.
U.
Fano
,
Phys. Rev.
124
,
1866
(
1961
).
5.
R. W.
Wetmore
,
H. F.
Schaeffer
III
,
P. C.
Hiberty
, and
J. I.
Brauman
,
J. Am. Chem. Soc.
102
,
5470
(
1980
).
6.
C. B.
Sawyer
,
J. Org. Chem.
37
,
4225
(
1972
).
7.
Preparation analogous to that of acetal described by Adkins and Nissen in Organic Synthesis, Coll. (Wiley, New York, 1941), Vol. I, p. 1.
8.
K. C.
Smyth
and
J. I.
Brauman
,
J. Chem. Phys.
56
,
1132
(
1972
).
9.
K. J.
Reed
and
J. I.
Brauman
,
J. Chem. Phys.
81
,
4830
(
1974
).
10.
This model provides the best fit to the data. See the derivation by
R. C.
Dunbar
,
J. Am. Chem. Soc.
95
,
6191
(
1973
).
11.
O. H.
Crawford
,
Mol. Phys.
20
,
585
(
1971
).
12.
W. R.
Garrett
,
Mol. Phys.
24
,
465
(
1972
).
13.
S. F.
Wong
and
G. J.
Schulz
,
Phys. Rev. Lett.
33
,
134
(
1974
).
14.
K.
Rohr
and
F.
Linder
,
J. Phys. B
9
,
2521
(
1976
);
K.
Rohr
,
J. Phys. B
11
,
1849
(
1978
).
15.
In SF6,
K.
Rohr
,
J. Phys. B
10
,
1175
(
1977
).
In SF6,
G. J.
Verhaart
,
W. J.
Van Der Hart
, and
H. H.
Brongersma
,
Chem. Phys.
34
,
161
(
1978
).
16.
K. D.
Jordan
and
J. J.
Wendoloski
,
Chem. Phys. Lett.
21
,
145
(
1977
).
17.
(a)
W. R.
Garrett
,
J. Chem. Phys.
71
,
651
(
1979
);
(b)
W. R.
Garrett
,
Chem. Phys. Lett.
62
,
325
(
1979
).
18.
See also the discussion by
K. D.
Jordan
,
K. M.
Griffing
,
J.
Kenney
,
E. L.
Andersen
, and
J.
Simons
,
J. Chem. Phys.
64
,
4730
(
1976
).
19.
The continuum cross section was best fit by a function scaling as E0.10−0.15 rather than the normal E0.5 function expected for an s wave. This is a result of the large dipole moment of the neutral and was predicted by
T. F.
O’Malley
,
Phys. Rev.
137
,
1668
(
1965
).
20.
K. D.
Jordan
,
J. Chem. Phys.
65
,
1214
(
1976
).
21.
SCF—MO techniques tend to obtain vibrational frequencies that are ∼10% too high. We have not corrected for this since we use our calculations in a qualitative way.
22.
C.
Sourisseau
,
B.
Pasquier
, and
J.
Hervieau
,
Spectrochim. Acta Part A
31
,
287
(
1975
).
23.
K.
Itoh
and
T.
Shimanouchi
,
J. Mol. Spectrosc.
42
,
86
(
1972
).
24.
The line shape analysis gives a lifetime of approximately 10−12s. This will not be highly reliable due to the approximations employed (see Ref. 2).
25.
R. S.
Berry
,
J. Chem. Phys.
45
,
1228
(
1966
).
26.
J. E.
Bartmess
,
J. A.
Scott
, and
R. T.
McIver
,
J. Am. Chem. Soc.
101
,
6046
(
1979
).
27.
These states will be Σ+2 by analogy with similar states in HCl. See
E.
Goldstein
,
G. A.
Segal
, and
R. W.
Wetmore
,
J. Chem. Phys.
68
,
271
(
1978
).
See also
O. H.
Crawford
,
Mol. Phys.
26
,
139
(
1973
).
28.
F. H.
Read
,
J. Phys. B
1
,
893
(
1968
).
29.
W. R.
Garrett
,
Chem. Phys. Lett.
5
,
393
(
1970
).
30.
A. H.
Zimmerman
,
K. J.
Reed
, and
J. I.
Brauman
,
J. Am. Chem. Soc.
99
,
7203
(
1977
).
31.
J. L.
Duncan
,
D. C.
McKean
, and
P. D.
Mallison
,
J. Mol. Spectrosc.
45
,
221
(
1973
).
32.
T.‐K.
Ha
,
R.
Meyre
, and
Hs. H.
Günthard
,
Chem. Phys. Lett.
59
,
17
(
1978
).
33.
(a)
E. B.
Wilson
,
J. Chem. Phys.
7
,
1047
(
1939
).
(b) E. B. Wilson, J. C. Diecus, and P. C. Cross, Molecular Vibrations (McGraw‐Hill, New York, 1955), p. 22.
(c) M. D. Harmony, Introduction to Molecular Energies and Spectra (Holt, Rinehart and Winston, New York, 1972), p. 282.
34.
T. E.
Sharp
and
H. M.
Rosenstock
,
J. Chem. Phys.
41
,
3453
(
1964
).
Some corrections to this paper are indicated in:
R.
Botter
,
V. H.
Dibeler
,
J. A.
Walker
, and
H. M.
Rosenstock
,
J. Chem. Phys.
44
,
1271
(
1966
)
and equations relating internal coordinates to normal coordinates are corrected in:
R.
Botter
and
H. M.
Rosenstock
,
J. Res. Nat. Bur. Stand. Sec. A
73
,
313
(
1969
).
35.
(a)
A.
Warshel
and
M.
Karplus
,
Chem. Phys. Lett.
17
,
7
(
1972
);
(b)
A.
Warshel
and
M.
Karplus
,
J. Am. Chem. Soc.
96
,
5677
(
1974
).
36.
(a) W. J. Hehre, W. A. Latham, R. Ditchfield, M. D. Newton, and J. A. Pople, QCPE 236, Indiana University, Bloomington, Indiana:
(b)
W. J.
Hehre
,
R. F.
Steward
, and
J. A.
Pople
,
J. Chem. Phys.
51
,
2657
(
1970
);
(c)
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
).
37.
T. H. Dunning and P. J. Hay, in Modern Theoretical Chemistry, edited by H. F. Schaeffer III (Plenum, New York, 1977), Vol. 3, p. 10.
This content is only available via PDF.
You do not currently have access to this content.