The energy ΔEvibrot transferred by quenching Na(3 2P3/2) to internal degrees of freedom of NO and small organic molecules with double bonds (C2H4, C3H6, C4H6, C4H8, and C2H2) has been investigated in a crossed beam experiment with laser excited Na. The results for NO show a maximum cross section for small ΔEvibrot and are critically compared with findings of other groups. The energy transfer spectra of organic molecules show that between 40% and 80% of the available total energy is transferred to the molecule in the average. The results are analyzed in the framework of statistical prior distributions, which give good agreement with the experiment when we assume that only a small number of internal degrees of freedom participates in the reaction.

1.
Th. Alkemade and P. J. Th. Zeegers, in Spectrochemical Methods of Analysis, edited by J. D. Winefordner (Wiley‐Interscience, New York, 1971).
2.
P. L. Lijnse, “Review of Literature on Quenching Excitation and Mixing Cross Sections for the First Resonance Doublets of the Alkalis,” Report i 398, Fysish Laboratorium, Utrecht University (1972) and Ph.D. thesis, Utrecht University (1973).
3.
L.
Krause
,
Adv. Chem. Phys.
48
,
267
(
1975
).
4.
I. V. Hertel, Adv. Chem. Phys. (in press).
5.
S.
Lemont
and
G. W.
Flynn
,
Annu. Rev. Phys. Chem.
28
,
261
(
1977
).
6.
R. J.
Donovan
,
Prog. React. Kinet.
10
,
253
(
1979
).
7.
J. R.
Barker
and
R. E.
Weston
Jr.
,
J. Chem. Phys.
65
,
1427
(
1976
).
8.
P.
Habitz
,
Chem. Phys.
54
,
131
(
1980
).
9.
P. Botschwina, W. Meyer, and I. V. Hertel, J. Chem. Phys. (to be published).
10.
P.
McGuire
and
I. C.
Bellum
,
J. Chem. Phys.
71
,
1975
(
1979
).
11.
I. V. Hertel, Adv. Chem. Phys. (to be published).
12.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
Phys. Rev. Lett.
36
,
861
(
1976
).
13.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
Chem. Phys. Lett.
47
,
163
(
1977
).
14.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
J. Chem. Phys.
71
,
674
(
1979
).
15.
J. A.
Silver
,
N. C.
Blais
, and
G. H.
Kwei
,
J. Chem. Phys.
67
,
839
(
1977
).
16.
J. A.
Silver
,
N. C.
Blais
, and
G. H.
Kwei
,
J. Chem. Phys.
71
,
3412
(
1979
).
17.
W. Reiland, G. Jamieson, and I. V. Hertel, J. Chem. Phys. (to be published).
18.
W. Reiland, G. Jamieson, and I. V. Hertel, Z. Phys. A (to be published).
19.
I. V.
Hertel
,
H.
Hofmann
, and
K. A.
Rost
,
Phys. Rev. Lett.
38
,
343
(
1977
);
see also H. W. Hermann and I. V. Hertel, in Coherence and Correlation in Atomic Collisions, edited by H. Kleinpoppen and J. F. Williams (Plenum, New York, 1980), p. 625.
20.
A.
Bjerre
and
E. E.
Nikitin
,
Chem. Phys. Lett.
1
,
179
(
1969
).
21.
E.
Bauer
,
E. R.
Fisher
, and
F. R.
Gilmore
,
J. Chem. Phys.
51
,
4173
(
1969
).
A number of slightly modified computations has been reported later on. See, for example,
E. R.
Fisher
and
G. K.
Smith
,
Appl. Opt.
10
,
1803
(
1971
).
22.
See, for example,
A. D.
Wilson
and
R. D.
Levine
,
Mol. Phys.
27
,
1197
(
1974
);
R. B.
Bernstein
and
R. D.
Levine
,
Adv. At. Mol. Phys.
11
,
215
(
1975
);
R. D. Levine and A. Ben‐Shaul, in Chemical and Biochemical Applications of Lasers II (1977), p. 145.
23.
D. S. Y.
Hsu
and
M. C.
Lin
,
Chem. Phys. Lett.
42
,
78
(
1976
).
24.
D. S. Y.
Hsu
and
M. C.
Lin
,
J. Chem. Phys.
73
,
2188
(
1980
).
25.
I. V.
Hertel
and
W.
Stoll
,
Adv. Atom. Mol. Phys.
13
,
113
(
1978
).
26.
H. S.
Taylor
,
Chem. Phys. Lett.
64
,
117
(
1979
);
and H. S. Taylor, in Electronic and Atomic Collisions, edited by N. Oda and K. Takayanagi (North‐Holland, Amsterdam, 1980), p. 263.
27.
C.
Bottcher
and
C. V.
Sukumar
,
J. Phys. B
10
,
2853
(
1977
).
28.
K. K. Jung and A. M. Kadisch, J. Phys. B (in press).
29.
H.
Köppel
,
W.
Domeke
,
L. S.
Cederbaum
, and
W. v.
Niessen
,
J. Chem. Phys.
69
,
4252
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.