The rate constants for the collisional dissociation of N2O5 by N2 are measured over the pressure and temperature ranges of 10 to 800 Torr and 285 to 384 K, respectively. The measurements are carried out in flow‐through reaction cells of different volumes, the N2O5 being detected by selected ion–molecule reactions in a flowing afterglow apparatus. The present rate constants are somewhat smaller than those of earlier studies and also suggest that the transition from second‐ to first‐order kinetics occurs at lower pressures than was earlier thought. The data are fitted to theoretical models of varying sophistication. The recommended values for use in extrapolation for the limiting low‐pressure and high‐pressure rate constants corresponding to the first‐order Troe extension of the Lindeman–Hinshelwood model for Fsccent = 0.572 are k0 = 1.15×10−5 exp (−19.70 kcal/mol/RT) cm3 s−1 and k00 = 1.21×1017exp(−25.41 kcal/mol/RT) s−1. Other forms yield similar results.

1.
P. J.
Crutzen
,
I. S. A.
Isaksen
, and
J. R.
McAfee
,
J. Geophys. Res.
83
,
345
(
1978
).
2.
Shaw Liu (private communication).
3.
R. A.
Ogg
, Jr.
,
J. Chem. Phys.
15
,
337
,
613
(
1947
).
4.
J. H.
Smith
and
F.
Daniels
,
J. Am. Chem. Soc.
69
,
1735
(
1947
).
5.
R. L.
Mills
and
H. S.
Johnston
,
J. Am. Chem. Soc.
73
,
938
(
1951
).
6.
R. L. Mills, Doctoral thesis, Stanford University (University Microfilms, Ann Arbor, 1951).
7.
H. S.
Johnston
and
R. L.
Perrine
,
J. Am. Chem. Soc.
73
,
4782
(
1951
).
8.
A. R.
Amell
and
F.
Daniels
,
J. Am. Chem. Soc.
74
,
6209
(
1952
).
9.
H. S.
Johnston
,
J. Am. Chem. Soc.
75
,
1567
(
1953
).
10.
D. J.
Wilson
and
H. S.
Johnston
,
J. Am. Chem. Soc.
75
,
5763
(
1953
).
11.
I. C.
Hisatsune
,
B.
Crawford
, and
R. A.
Ogg
,
J. Am. Chem. Soc.
79
,
4648
(
1957
).
12.
G.
Schott
and
N.
Davidson
,
J. Am. Chem. Soc.
80
,
1841
(
1958
).
13.
P.
Connell
and
H. S.
Johnston
,
Geophys. Res. Lett.
6
,
553
(
1979
).
14.
P. Connell, Doctoral thesis, University of California, Berkeley (Lawrence Berkeley Laboratory, no. 9034, 1979).
15.
H. S.
Johnston
,
J. Chem. Phys.
20
,
1103
(
1952
).
16.
H. S.
Johnston
and
J. R.
White
,
J. Chem. Phys.
22
,
1969
(
1954
).
17.
R. E.
Powell
,
J. Chem. Phys.
30
,
724
(
1959
).
18.
E. K.
Gill
and
K. J.
Laidler
,
Proc. R. Soc. A
250
,
121
(
1959
).
19.
E.
Thiele
and
D. J.
Wilson
,
J. Chem. Phys.
35
,
1256
(
1961
).
20.
C. M.
Wieder
and
R. A.
Marcus
,
J. Chem. Phys.
37
,
1835
(
1962
).
21.
D. M. Golden and A. C. Baldwin (private communication, 1979).
22.
J. A.
Davidson
,
A. A.
Viggiano
,
C. J.
Howard
,
I.
Dotan
,
F. C.
Fehsenfeld
,
D. L.
Albritton
, and
E. E.
Ferguson
,
J. Chem. Phys.
68
,
2085
(
1978
).
23.
M. S. Zahniser (private communication, 1979).
24.
E. D.
Morris
and
H.
Niki
,
J. Phys. Chem.
77
,
1929
(
1973
).
25.
F. C.
Fehsenfeld
and
E. E.
Ferguson
,
Planet. Space Sci.
16
,
701
(
1968
).
26.
F. C.
Fehsenfeld
,
C. J.
Howard
, and
A. L.
Schmeltekopf
,
J. Chem. Phys.
63
,
2835
(
1975
).
27.
E. E.
Ferguson
,
F. C.
Fehsenfeld
, and
A. L.
Schmeltekopf
,
Adv. At. Mol. Phys.
5
,
1
(
1969
).
28.
A. A. Viggiano, Doctoral thesis, University of Colorado, Boulder (1980).
29.
S. Dushman and J. M. Lafferty, Vacuum Techniques (Wiley, New York, 1966), pp. 80–87.
30.
H. S.
Johnston
,
J. Am. Chem. Soc.
73
,
4542
(
1951
).
31.
P. V. Tryon and J. R. Donaldson, Statlib Manual (NBS Center for Applied Mathematics, Boulder, 1978).
32.
C. N. Hinshelwood, The Kinetics of Chemical Change (Oxford University, Oxford, 1940).
33.
J.
Troe
,
J. Phys. Chem.
83
,
114
(
1979
).
34.
J. Troe, Physical Chemistry Series Two, Chemical Kinetics, edited by D. R. Herschbach (Butterworths, London, 1976), Vol. 9, pp. 1–24.
35.
J. Troe, Physical Chemistry: An Advanced Treatise. V. VIB, Kinetics of Gas Reactions, edited by H. Eyring, D. Henderson, and W. Jost (Academic, New York, 1975), pp. 835–929.
36.
R. A.
Graham
and
H. S.
Johnston
,
J. Phys. Chem.
82
,
254
(
1978
).
37.
U. S. Standard Atmosphere (1976), U.S. Printing Office, Washington, D.C. 20402, stock no. 003‐017‐00323‐0.
This content is only available via PDF.
You do not currently have access to this content.