The multiplicative property of linear dichroism relative to axes of ’’statistical’’ rotation has allowed a simple, general formulation of the reduced dichroism of solutes oriented in uniaxially stretched polymer matrices: LDr=3 Sp ΣiSiiOi, i=x, y, z; where Sp=1/2ℱ0π/2 (3 cos2ϑ−1) df (ϑ) is a factor characterizing the orientation of the polymer. Sp was derived as a function of stretch for the case when f(ϑ) is the distribution of independent directions p (not necessarily attached to polymer chains) obtained in an isotropic‐substrate sphere when this is deformed into a spheroid at constant volume. Sii define two independent local orientation parameters which depend on the solute–polymer interaction; Oi are optical factors given by the moment directions of the absorbing transitions. The model was tested for a few solutes, with known moment directions, in stretched films of polyvinyl alcohol (PVA) and polyethylene (PE). The agreement between predicted and observed LDr, using the model distribution, was excellent for two elongated dyes in PVA but only qualitative in PE. A significant variation of Sii with the degree of stretch indicates that the solute orientation is not due only to interaction with a single neighbor chain, a behavior which is consistent with a repulsive interaction.

1.
(a)
B.
Nordén
,
Appl. Spectrosc. Rev.
14
,
157
(
1978
);
(b)
L.
Gårding
and
B.
Nordén
,
Chem. Phys.
41
,
431
(
1979
).
2.
(a)
Y.
Tanizaki
,
Bull. Chem. Soc. Jpn.
32
,
75
(
1959
);
(b)
Y.
Tanizaki
,
Bull. Chem. Soc. Jpn.
38
,
1798
(
1965
).,
Bull. Chem. Soc. Jpn.
3.
E. W.
Thulstrup
and
J. H.
Eggers
,
Chem. Phys. Lett.
1
,
690
(
1968
);
E. W.
Thulstrup
,
J.
Michl
, and
J. H.
Eggers
,
J. Phys. Chem.
74
,
3868
(
1970
);
J.
Michl
,
E. W.
Thulstrup
, and
J. H.
Eggers
,
J. Phys. Chem.
74
,
3878
(
1970
); ,
J. Phys. Chem.
C. C.
Bott
and
T.
Kurucsev
,
J. Chem. Soc. Faraday Trans. II
71
,
749
(
1975
);
N. S.
Gangakhedkar
,
A. V.
Namjoshi
,
P. S.
Tamhane
, and
N. K.
Chaudhuri
,
J. Chem. Phys.
60
,
2584
(
1974
).
4.
H.
Inoue
,
T.
Nakamura
, and
T.
Igarashi
,
Bull. Chem. Soc. Jpn.
44
,
1469
(
1971
);
H.
Inoue
,
T.
Hoshi
,
T.
Masamoto
,
J.
Shiraishi
, and
Y.
Tanizaki
,
Ber. Bunsenges. Phys. Chem.
75
,
441
(
1971
);
K. R.
Popov
,
Opt. Spectrosc.
38
,
102
(
1975
).
5.
(a) J. Michl and E. W. Thulstrup, in Proceedings of the Nobel Workshop in Lund October 25–27, 1976, on Molecular Optical Dichroism and Chemical Applications of Polarized Spectroscopy, edited by B. Nordén (Lund U.P., Lund, 1977), p. 35;
(b)
J.
Kolc
,
E. W.
Thulstrup
, and
J.
Michl
,
J. Am. Chem. Soc.
96
,
7188
(
1974
).
6.
O.
Kratky
,
Kolloid Z. Z. Polym.
64
,
213
(
1933
).
7.
J. H.
Nobbs
,
D. I.
Bower
,
I. M.
Ward
, and
D.
Patterson
,
Polymer
15
,
287
(
1974
).
8.
P.
Krebs
and
E.
Sackmann
,
J. Magn. Res.
22
,
359
(
1976
).
9.
J.
Gawronski
,
T.
Liljefors
, and
B.
Nordén
,
J. Am. Chem. Soc.
101
,
5515
(
1979
).
10.
A.
Yogev
,
L.
Margulies
,
D.
Amar
, and
Y.
Mazur
,
J. Am. Chem. Soc.
94
,
4558
(
1969
);
A.
Yogev
,
J.
Riboid
,
J.
Marero
, and
Y.
Mazur
,
J. Am. Chem. Soc.
94
,
4559
(
1969
); ,
J. Am. Chem. Soc.
A. Yogev, in Ref. 5(a), p. 54;
L.
Margulies
and
A.
Yogev
,
Chem. Phys.
27
,
89
(
1978
).
11.
(a)
Å.
Davidsson
and
B.
Nordén
,
Chem. Scr.
9
,
49
(
1976
);
(b)
H. P.
Jensen
,
J. A.
Schellman
, and
T.
Troxell
,
Appl. Spectrosc.
32
,
192
(
1978
).
12.
C. C.
Bott
and
T.
Kurucsev
,
Chem. Phys. Lett.
55
,
585
(
1978
).
13.
B. E. Read, in Structure and Properties of Oriented Polymers, edited by I. M. Ward (Applied Science Publishers, London, 1975), p. 169.
14.
B.
Nordén
and
S.
Seth
,
Biopolymers
18
,
2323
(
1979
).
15.
L. W.
Smirnov
,
Opt. Spectrosk.
3
,
123
(
1957
);
K. R.
Popov
and
L. V.
Smirnov
,
Opt. Spectrosk.
28
,
1134
(
1970
).
16.
R. D. B.
Fraser
,
J. Chem. Phys.
21
,
1155
(
1958
);
B.
Nordén
,
Chem. Scr.
1
,
145
(
1971
).
17.
Å.
Davidsson
and
B.
Nordén
,
Chem. Phys. Lett.
28
,
221
(
1974
).
18.
K. R.
Popov
,
Opt. Spectrosc.
39
,
142
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.