In the molecular dynamics simulation method for fluids, the equations of motion for a collection of particles in a fixed volume are solved numerically. The energy, volume, and number of particles are constant for a particular simulation, and it is assumed that time averages of properties of the simulated fluid are equal to microcanonical ensemble averages of the same properties. In some situations, it is desirable to perform simulations of a fluid for particular values of temperature and/or pressure or under conditions in which the energy and volume of the fluid can fluctuate. This paper proposes and discusses three methods for performing molecular dynamics simulations under conditions of constant temperature and/or pressure, rather than constant energy and volume. For these three methods, it is shown that time averages of properties of the simulated fluid are equal to averages over the isoenthalpic–isobaric, canonical, and isothermal–isobaric ensembles. Each method is a way of describing the dynamics of a certain number of particles in a volume element of a fluid while taking into account the influence of surrounding particles in changing the energy and/or density of the simulated volume element. The influence of the surroundings is taken into account without introducing unwanted surface effects. Examples of situations where these methods may be useful are discussed.
Skip Nav Destination
Article navigation
15 February 1980
Research Article|
July 15 2008
Molecular dynamics simulations at constant pressure and/or temperature
Special Collection:
JCP 90 for 90 Anniversary Collection
Hans C. Andersen
Hans C. Andersen
Department of Chemistry, Stanford University, Stanford, California 94305
Search for other works by this author on:
J. Chem. Phys. 72, 2384–2393 (1980)
Citation
Hans C. Andersen; Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 15 February 1980; 72 (4): 2384–2393. https://doi.org/10.1063/1.439486
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
Molecular dynamics simulations extended to various ensembles. I. Equilibrium properties in the isoenthalpic–isobaric ensemble
J. Chem. Phys. (July 2008)
Statistical ensembles and molecular dynamics studies of anisotropic solids
J. Chem. Phys. (May 1984)
A new adiabatic ensemble with particle fluctuations
J. Chem. Phys. (October 1981)
A unified methodological framework for the simulation of nonisothermal ensembles
J. Chem. Phys. (August 2005)
Simulation and extrapolation of coexistence properties with single-phase and two-phase ensembles
J. Chem. Phys. (November 2000)