Using an exponential transition probability model normalized in the (0,∞) energy domain, we have obtained an analytical solution for the time‐dependent population density below threshold, c (x,t), in the form of the eigenfunction expansion where x is internal energy, t is time, A0 and Aj are constants that depend on initial conditions, S and Rj are solutions of a determinant of a matrix of coefficients and k0−1 and τj are the relaxation times, the lowest of which (subscript 0) represents the reciprocal of the steady‐state rate constant. From c (x,t) we then obtain all other time‐dependent properties such as the non‐steady‐state rate constant and average energy, as well as incubation times and dead times for both number density and vibrational energy. Calculations relative to shock tube decomposition of N2O, CO2, and O2 in inert gas are compared with experiment, with generally good results. For the triatomics, average energy transferred per collision, as calculated from the experimental relaxation time, compares well with that calculated from the Schwartz–Slawsky–Herzfeld theory. The calculated diatomic rate constants (but not the relaxation and incubation times) are too low. Calculations relative to shock tube decomposition of cyclopropane are compared with numerical calculations of Malins and Tardy using a stepladder model. It is concluded that non‐steady‐state effects are unlikely in the cyclopropane shock tube work, and that diatomic rate constants are sensitive to rotational energy transfer.

1.
A. P.
Penner
and
W.
Forst
,
J. Chem. Phys.
67
,
5296
(
1977
). Part I.
2.
A. P.
Penner
and
W.
Forst
,
Chem. Phys. Lett.
56
,
117
(
1978
).
3.
S.
Nordholm
,
Chem. Phys.
29
,
55
(
1978
).
4.
B.
Widom
,
J. Chem. Phys.
32
,
913
(
1960
).
5.
S. W.
Provencher
,
J. Chem. Phys.
64
,
2772
(
1976
).
6.
C. A.
Brau
,
J. D.
Keck
, and
G. F.
Carrier
,
Phys. Fluids
9
,
1885
(
1966
).
7.
J. E.
Dove
and
J.
Troe
,
Chem. Phys.
35
,
1
(
1978
).
8.
W. Forst, Theory of Unimolecular Reactions (Academic, New York, 1973).
9.
See, for example, J. F. Clarke and M. McChesney, The Dynamics of Real Gases (Butterworths, London, 1964), p. 336. (Last equation on p. 335 has the wrong sign.)
10.
R. J.
Malins
and
D. C.
Tardy
,
Int. J. Chem. Kinet.
11
,
1007
(
1979
). There appears to be no uniformly accepted nomenclature. Terms like incubation time, dead time, induction time26 or initial slip
[
R.
Zwanzig
,
J. Chem. Phys.
33
,
1338
(
1960
);
H.
Grad
,
Phys. Fluids
6
,
147
(
1963
);
B. C.
Sanctuary
and
R. F.
Snider
,
J. Chem. Phys.
67
,
5517
(
1977
)] may or may not mean the same thing, depending on each author’s own definition.
11.
A somewhat related approach has been used by
J.
Troe
,
J. Chem. Phys.
66
,
4758
(
1977
).
12.
W.
Forst
,
J. Phys. Chem.
76
,
342
(
1972
);
W.
Forst
,
83
,
100
(
1979
).,
J. Phys. Chem.
13.
D. C.
Tardy
and
B. S.
Rabinovitch
,
J. Chem. Phys.
45
,
3720
(
1966
);
D. C.
Tardy
and
B. S.
Rabinovitch
,
48
,
1282
(
1968
).,
J. Chem. Phys.
14.
R. N.
Schwartz
,
Z. I.
Slawsky
and
K. P.
Herzfeld
,
J. Chem. Phys.
20
,
1591
(
1952
).
15.
F. I.
Tanczos
,
J. Chem. Phys.
25
,
439
(
1956
).
16.
J. L.
Stretton
,
Trans. Faraday Soc.
61
,
1053
(
1965
).
17.
Y.
Yonezawa
and
T.
Fueno
,
Bull. Chem. Soc. Jpn.
47
,
1894
(
1974
).
18.
S.
Fischer
,
Chem. Phys. Lett.
44
,
209
(
1976
).
19.
A.
Miklavc
and
S. F.
Fischer
,
Chem. Phys.
69
,
281
(
1978
).
20.
D.
Rapp
and
T.
Kassal
,
Chem. Rev.
69
,
61
(
1969
).
21.
B.
Mahan
,
J. Chem. Phys.
52
,
5221
(
1970
).
22.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967), p. 1110, Table I‐A.
23.
J. Troe, in Modern Developments in Shock Tube Research, Proceedings of the Xth International Shock Tube Symposium, Kyoto, 1975, edited by G. Kamimoto (Pergamon, New York, 1976), p. 29;
J. Troe and H. Gg. Wagner, in Physical Chemistry of Fast Reactions, edited by B. P. Levitt (Plenum, London, 1973), Chap. 1.
24.
T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated Volume I, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. 39 (1972).
25.
J. E. Dove, W. S. Nip, and H. Teitelbaum, 15th Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1974), p. 903.
26.
A. W.
Yau
and
H. O.
Pritchard
,
Can. J. Chem.
57
,
1723
(
1979
).
27.
C. J. M. S.
Simpson
and
T. R. D.
Chandler
,
Proc. R. Soc. London, Ser. A
317
,
265
(
1970
);
C. J. M. S.
Simpson
,
T. R. D.
Chandler
, and
A. C.
Strawson
,
J. Chem. Phys.
51
,
2214
(
1969
).
28.
G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, 1957), p. 558.
29.
M.
Camac
,
J. Chem. Phys.
34
,
448
(
1961
).
30.
D. R.
White
and
R. C.
Millikan
,
J. Chem. Phys.
39
,
1807
(
1963
).
31.
D. G.
Carbonell
and
B. J.
McCoy
,
Phys. Fluids
19
,
1721
(
1976
).
32.
H. S.
Johnston
, Gas Phase Reaction Kinetics of Neutral Oxygen Species,
Nat. Stand. Ref. Data Ser. Nat. Bur. Stand.
20
(
1968
).
33.
I. E.
Klein
and
B. S.
Rabinovitch
,
Chem. Phys.
35
,
439
(
1978
).
34.
H.
Endo
,
K.
Glanzer
, and
J.
Troe
,
J. Phys. Chem.
83
,
2083
(
1979
). Presumably their numbers for 〈ΔE〉 should be negative.
35.
J. N.
Bradley
and
M. A.
Frend
,
Trans. Faraday Soc.
67
,
1
(
1971
).
J. A.
Barnard
,
A. T.
Cocks
, and
R. K. Y.
Lee
,
J. Chem. Soc. Faraday Trans. 1
70
,
1782
(
1974
).
36.
S. E.
Nielsen
and
T. A.
Bak
,
J. Chem. Phys.
41
,
665
(
1964
).
37.
E. E. Nikitin, Theory of Elementary Atomic and Molecular Processes (Clarendon, Oxford, 1974), p. 352, Eq. (44.4).
38.
N. S.
Snider
,
Can. J. Chem.
55
,
3464
(
1977
).
39.
N. C.
Blais
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2962
(
1979
).
40.
J. H.
Kiefer
,
H. P. G.
Joosten
and
W. D.
Breshears
,
Chem. Phys. Lett.
30
,
424
(
1975
);
J. H.
Kiefer
and
J. C.
Hajduk
,
Chem. Phys.
38
,
329
(
1979
);
M.
Ramakrishna
and
S. V.
Babu
,
J. Chem. Phys.
68
,
163
(
1978
).
41.
A. P.
Penner
and
W.
Forst
,
Chem. Phys.
13
,
51
(
1976
).
42.
A. P.
Penner
and
W.
Forst
,
Chem. Phys.
11
,
243
(
1975
).
43.
M.
Ramakrishna
and
S. V.
Babu
,
Chem. Phys.
42
,
325
(
1979
).
44.
D. G.
Truhlar
,
N. C.
Blais
,
J. C. J.
Hajduk
, and
J. H.
Kiefer
,
Chem. Phys. Lett.
63
,
337
(
1979
).
45.
J. E.
Dove
and
H.
Teitelbaum
,
Chem. Phys.
40
,
87
(
1979
).
However hydrogen may be a special case—cf.
H. O.
Pritchard
,
Can. J. Chem.
54
,
2372
(
1976
).
46.
J. W.
Duff
,
N. C.
Blais
, and
D. G.
Truhlar
,
J. Chem. Phys.
71
,
4304
(
1979
).
47.
J. E.
Dove
and
S.
Raynor
,
J. Phys. Chem.
83
,
127
(
1979
).
48.
D. F.
Kelley
,
B. D.
Barton
,
L.
Zalotai
, and
B. S.
Rabinovitch
,
J. Chem. Phys.
71
,
538
(
1979
).
49.
D.
Gutman
,
R. L.
Bedford
,
A. J.
Hay
, and
R. J.
Pancirov
,
J. Phys. Chem.
70
,
1193
(
1966
).
50.
H. A.
Olschewski
,
J.
Troe
, and
H. Gg.
Wagner
,
Ber. Bunsenges. Phys. Chem.
70
,
1793
(
1966
).
51.
A. M.
Dean
,
Int. J. Chem. Kinet.
8
,
459
(
1976
).
52.
W. O.
Davies
,
J. Chem. Phys.
41
,
1846
(
1964
).
53.
A. M.
Dean
,
J. Chem. Phys.
58
,
5202
(
1973
).
54.
H. Vasatko, Ph.D. thesis, Universität Göttingen, 1970.
55.
H. Gg.
Wagner
and
F.
Zabel
,
Ber. Bunsenges. Phys. Chem.
78
,
705
(
1974
).
56.
W. S.
Watt
and
A. L.
Myerson
,
J. Chem. Phys.
51
,
1638
(
1969
).
57.
K. L.
Wray
,
J. Chem. Phys.
37
,
1254
(
1962
);
K. L.
Wray
,
38
,
1518
(
1963
); ,
J. Chem. Phys.
in Tenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1965), p. 523.
58.
A. Ralston, A First Course in Numerical Analysis (McGraw‐Hill, New York, 1965), p. 332.
59.
J. H.
Kiefer
and
J. C.
Hajduk
,
Chem. Phys. Lett.
52
,
174
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.